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Abstract Seismically detected ultralow velocity zones (ULVZs) at the the core-mantle boundary reflect
the dynamical state and geological evolution of the silicate-metal frontier of Earth's deep interior. However,
modeling the dynamical context of ULVZs is hampered by challenges, such as the necessity of fine-scale
resolution and the accurate treatment of large viscosity contrasts. Here we extend the treatment of ULVZs
using a lubrication theory approach and apply it to numerical and analytical models relevant for mantle
convection in the core-mantle boundary region. A generic model of a thin and dense low-viscosity ULVZ
layer embedded between an overlying convecting viscous mantle and an underlying inviscid core can
explain several features that are consistent with seismic inferences, such as the absence of ULVZs in some
regions and a tabular shape where they are concentrated. The model explains how the topography of a
ULVZ layer tends to saturate and flatten as it becomes thicker, due to a nonlinear feedback between viscous
aggregation beneath upwelling mantle currents and gravitational spreading/relaxation. Implementation of
the ULVZ equation in thermal convection models indicates that ULVZs are preferentially gathered beneath
long-lived plumes and may not exist beneath newly formed plume roots where there is no source of layer
material. The presence/absence of ULVZs and their detailed shapes may provide important insights into
the dynamical state and convective instability of the lowermost mantle thermal boundary layer.

1. Introduction
Ultralow velocity zones (ULVZs) are small-scale (∼10 km thick, ∼100–1,000 km wide) regions at the
core-mantle boundary (CMB; Garnero & Helmberger, 1996; Williams & Garnero, 1996) that are charac-
terized by seismic velocity reductions of order ∼10% and whose apparent stability and wide aspect ratios
suggest higher densities relative to the overlying mantle (Garnero & McNamara, 2008; Hernlund & Tackley,
2007; Hernlund & McNamara, 2014). These tabular-like features may underlie some hot spots that
are thought to be the surface manifestation of deep-seated upwelling hot mantle plumes (Cottaar &
Romanowicz, 2012; Jellinek & Manga, 2002, 2004; Helmberger et al., 1998; Williams et al., 1998; Yuan &
Romanowicz, 2017), and which exhibit a variety of chemical and isotopic anomalies (Jellinek & Manga,
2002). ULVZs are thought to be concentrated at regions of horizontally convergent flow above the CMB,
such as plume roots at the borders of ∼1,000-km scale chemically distinct large low shear velocity provinces
(LLSVPs; Hernlund & Tackley, 2007; McNamara et al., 2010). ULVZs are also found in portions of the CMB
region that are not associated with any candidate plume root or LLSVP boundary (Garnero et al., 2016; Li
et al., 2017). Recently, somewhat larger “mega-ULVZ” structures have been reported in the Pacific region
(Cottaar & Romanowicz, 2012; Jensen et al., 2013; Thorne et al., 2013). In terms of the magnitude of their
seismic velocity variation, density contrast, thickness, and spatial variability, ULVZs are roughly analogous
to the Earth's crust, although the geodynamical context differs in many respects.

Because of their pole position at the interface between Earth's lower mantle and outer liquid core, under-
standing the evolution of ULVZs is important for constraining the long-term thermal and chemical evolution
of the CMB and the interactions (e.g., mass exchange) between Earth's mantle and core. However, the origin
of ULVZs remains unclear and is a topic of active research (Hernlund & McNamara, 2014). The distinctive-
ness of these structures has been hypothesized to represent partially molten material as it circulates through
the hot lower mantle thermal boundary layer (e.g., Rost et al., 2005; Williams & Garnero, 1996). However,
the necessity for this kind of freshly generated partially molten mixture to attain a higher density (hence
dynamically producing a wide aspect ratio), combined with inhibition of melt-solid separation to main-
tain its seismically anomalous character (Hernlund & Jellinek, 2010), implies a negative volume change
upon melting that is not supported by mineral physics (Hernlund & Tackley, 2007). Another possibility is
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that ULVZs represent chemically distinct material that has previously melted and accumulated at the CMB
(Ohtani & Maeda, 2001) or was formed as the ancient fractionated residue of a more extensive basal magma
ocean that prevailed in the hotter early Earth (Labrosse et al., 2007; Nomura et al., 2011; Wicks et al., 2010).
Other ideas posit entrainment of metallic iron into silicates at the base of the mantle (Kanda & Stevenson,
2006; Petford et al., 2013). Present-day CMB structures, including ULVZs, might also reflect relics of the ener-
getic accretion and segregation processes of the early solar system such as the Moon-forming giant impact,
processes that may have contributed to the formation of deep mantle melts (Labrosse et al., 2015; Laneuville
et al., 2018).

Whatever their origin may be, ULVZ shape and distribution may yield important clues about the nature
of lowermost mantle dynamics, such as the planform of lowermost mantle convection, the existence of
deep-seated plume roots or large-scale laterally distinct chemical domains, constraints on deep mantle rhe-
ology, the pattern of heat flux variations, and more. However, modeling of these structures presents some
challenges. For example, incorporating the evolution of ULVZs in numerical models of large-scale man-
tle convection is computationally expensive due to their small spatial scale compared to the length scale of
the mantle (∼0.1%). Past studies have investigated the dynamics and morphologies of chemically distinct
dense ULVZ layers in 2-D by using a particle-based approach (McNamara et al., 2010), and more recently
in 3-D for different ULVZ origin scenarios (Li et al., 2017). Compositionally distinct ULVZs have also been
modeled using local boundary element formulations, revealing details of internal deformation behavior
(Hier-Majumder & Drombosky, 2016). However, such methods remain computationally expensive, and it is
possible that some details are not well resolved or may have other limitations. There may also be issues of
numerical accuracy arising from tracer particle treatments for handling variations over length scales similar
to the numerical discretization of the model. Finally, there are also limitations (both in extent and accuracy)
with respect to resolving the large viscosity contrasts that might exist in ULVZs relative to the overlying
mantle (Hier-Majumder & Revenaugh, 2010; Hernlund & Jellinek, 2010).

Here, we derive a simple way of mathematically modeling an ultrathin ULVZ layer at the bottom of the
mantle by use of lubrication theory (Reynolds, 1886). The resulting “ULVZ equation” can be used to describe
the evolution of ULVZs using either analytical or numerical tools (e.g., in mantle convection models). This
approach is inspired by Hier-Majumder and Revenaugh (2010), who previously applied lubrication theory
to arrive at approximate steady solutions for ULVZs with distinct chemical compositions residing beneath
an axisymmetric upwelling flow (e.g., rooted beneath an upwelling hot mantle plume). They used these
solutions, combined with seismological observations, to propose an estimate for the viscosity of ULVZs.
Their results are consistent with viscosities of order ∼1018 Pa s, which could be considered relatively small
for rocks in the lower mantle (Karato, 2014), although it is not clear a priori what kind of viscosity one
should expect for ULVZ structures with potentially exotic chemical compositions. The present work is an
expansion of this effort to include a more general derivation for time-dependent evolution and applications
of the equation to a broader context.

The plan of this study is as follows: First, we derive the ULVZ equation by applying the thin-layer approxi-
mation to the Navier-Stokes equations relevant to this scenario. We then describe some basic analysis of the
equation and explore the coupling between a thin dense layer and an overlying highly viscous mantle. We
show how the areal coverage of ULVZs constrains the properties of the material that comprises it, which
offers a unique observational approach for probing the properties of ULVZs. We then explore numerical
solutions of the ULVZ equation as the main parameters are varied. Finally, we show how the ULVZ layer
evolves in a simple 2-D thermal convection model and illustrate the ease with which a ULVZ layer can be
included in any mantle convection code.

Using the time-dependent ULVZ equation, we arrive at several interesting results, which we examine in fur-
ther detail later in the discussion. We show that chemically distinct ULVZs are swept into compact structures
in time scales on the order of the residence time of mantle material circulating through the CMB region,
leaving much of the top surface of the core exposed to mantle material circulating into the CMB region from
above. We also show that the fractional coverage of ULVZs over the CMB constrains intrinsic ULVZ prop-
erties such as density and viscosity if the form of mantle circulation is known. Testing the ULVZ equation
in mantle convection models at high convective vigor shows that compositionally distinct ULVZs reside at
the root of old plumes and may not be present beneath newly formed plumes, offering a possible indepen-
dent test of the degree of convective instability of the lowermost mantle thermal boundary layer. A slight
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Figure 1. Schematic representation of a chemically distinct ULVZ layer subject to deformation by mantle flow. The
h ∼10-km-thin ULVZ layer (yellow) overlies the liquid outer core (red) and varies over lateral length scales L ∼100 km.
ULVZ = ultralow velocity zone; CMB = core-mantle boundary.

asymmetry in the shape of ULVZs is produced by lateral motion of plumes along the CMB, with thickening
in the direction of plume migration, and such features might be used to investigate the dynamical state of
the lowermost mantle.

2. Derivation of the ULVZ Equation
Here we describe the derivation of the equation governing the evolution of a thin chemically distinct layer
at the CMB. The approach is closely related to the lubrication theory developed by Reynolds (1886), which
is a special case in fluid dynamics that deals with the scenario in which a fluid layer of thickness h exhibits
variations over perpendicular length scales L that are comparatively much larger in magnitude than h. Here
we consider variations in h to be of order h (consistent with our later findings). When one assumes h∕L ≪ 1,
called the “thin-layer approximation,” the equations governing fluid flow in the layer can be simplified
dramatically. In the following, we derive an equation governing a thin layer with positive anomalous density
Δ𝜌 (relative to the mantle) embedded beneath a creeping highly viscous half-space (i.e., the convecting rocky
solid mantle) and resting upon a denser inviscid substrate (i.e., the liquid outer core). The basic context of
the ULVZ layer is shown in Figure 1.

For simplicity, in this development we adopt a Cartesian reference frame with orthonormal coordinates x, y,
and z (where z varies in the vertical direction) and time denoted by t. The thickness of the ULVZ is negligible
in comparison with the curvature (i.e., 1/radius) of the CMB. It is straightforward to extend the results to
other coordinate systems, so long as any assumptions made in one coordinate system (e.g., the direction of
gravity) remain valid in the new one. Our thin layer is confined between the plane at z = 0 (CMB) and the
surface z = h(x, y) > 0. Although a perfectly flat bottom boundary is not strictly valid for a dense ULVZ layer,
which is expected to protrude slightly into the underlying core as it thickens (Hernlund & Tackley, 2007),
the assumption of bottom flatness will not influence the resulting governing equation.

2.1. Transport Equation
We first describe the motion of the layer surface at z = h (i.e., the top of the ULVZ) in terms of the fluid
velocities at the top the layer, with vx, vy, and vz being the x-, y-, and z components of the velocity at z = h.
We define a “level set” function f(x, y, z, t) = z − h(x, y, t), such that f = 0 at the interface between the layer
and overlying material. The surface moves from any position x, y, and z at time t to a position x + vx𝛿t, y +
vy𝛿t, z + vz𝛿t at time t + 𝛿t. Expanding f as a Taylor series in 𝛿t gives

𝑓 (x + vx𝛿t, 𝑦 + vy𝛿t, z + vz𝛿t, t + 𝛿t) = 𝑓 (x, 𝑦, z, t) +
(
𝜕𝑓

𝜕t
+ v⃗ · ∇⃗𝑓

)
𝛿t + O(𝛿t2). (1)

Because f(x, y, z, t) = 0 at all times, both the left side and the first term on the right side of equation (1)
vanish. Taking the limit 𝛿t → 0 then gives the following result:

𝜕𝑓

𝜕t
+ v⃗ · ∇⃗𝑓 = 0. (2)

For convenience of notation, we use a subscript H to denote a vector with only horizontal components (i.e.,
no z component) and denote vz(x, y, z = h, t) = V(x, y, t) and v⃗H(x, 𝑦, z = h, t) = U⃗(x, 𝑦, t). Equation (2) can
then be rewritten in the following form:

𝜕𝑓

𝜕t
+ V 𝜕𝑓

𝜕z
+ U⃗ · ∇⃗H𝑓 = 0. (3)
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Substituting f = z − h, a transport equation governing h in terms of V and U⃗ is obtained:

𝜕h
𝜕t

= V − U⃗ · ∇⃗Hh. (4)

2.2. Conservation of Mass
Fluid flow in the thin layer is well approximated as incompressible, in which case the conservation of mass
inside the layer is given by

𝜕vz

𝜕z
+ ∇⃗H · v⃗H = 0. (5)

2.3. Conservation of Momentum
If we assume that gravity is antiparallel to the z-axis and neglect the influence of fluid inertia, the equation
governing conservation of momentum in the vertical direction can be written as

𝜇∇2
Hvz + 𝜇

𝜕2vz

𝜕z2 −
𝜕p
𝜕z

− Δ𝜌g = 0, (6)

and in the horizontal direction(s)

𝜇∇2
Hv⃗ H + 𝜇

𝜕2v⃗H

𝜕z2 − ∇⃗Hp = 0, (7)

where p is the nonhydrostatic (dynamic) pressure variation, Δ𝜌 is the positive density anomaly of the thin
layer, 𝜇 is its dynamic viscosity, and ∇2

H = ∇⃗H · ∇⃗H.

2.4. Thin-Layer Approximation
The relative magnitude of terms in the governing equations (4)–(7) for a thin layer can be assessed by replac-
ing ∇⃗ H ∼ 1∕L and 𝜕∕𝜕z ∼ 1∕h, where the symbol “∼” is meant to convey “is on the order of.” Performing
this substitution in equations (5)–(7) results in

𝛿V
h

+ 𝛿U
L

∼ 0, (8)

𝜇𝛿V
(

h
L

)2

+ 𝜇𝛿V + 𝛿ph + Δ𝜌gh2 ∼ 0, (9)

and

𝜇𝛿U
(

h
L

)2

+ 𝜇𝛿U +
𝛿ph2

L
∼ 0, (10)

where 𝛿V, 𝛿U, and 𝛿p denote the corresponding magnitudes of velocity and pressure variations. The first
terms in (9)–(10) vary like (h∕L)2, and we anticipate that they become negligibly small in the limit h∕L → 0.
In such a case the residual terms in equation (10) reduce to

𝜇𝛿U ∼
𝛿ph2

L
. (11)

Using both equations (8) and (11), the residual terms for equation (9) then reduce to

𝜇𝛿V + 𝛿ph + Δ𝜌gh2 ∼
(

h
L

)2

𝛿ph + 𝛿ph + Δ𝜌gh2 ∼ 0, (12)

showing that the term representing the relative contribution of 𝜇𝜕2vz∕𝜕z2 is also of order (h∕L)2. Therefore,
in the limit h∕L → 0 we expect that 𝜇𝜕2vz∕𝜕z2 → 0, which implies that variations in vz of order higher than
linear in z may be neglected in a thin-layer context. After eliminating all terms of order (h∕L)2 the simplified
momentum equations may be written as

𝜕p
𝜕z

≈ −Δ𝜌g (13)

and

𝜇
𝜕2v⃗H

𝜕z2 ≈ ∇⃗Hp. (14)
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2.5. Integrated Thin-Layer Equation
For boundary conditions appropriate to ULVZs, the upper surface at z = h is in contact with the overlying
mantle and has the same velocity (V , U⃗) and dynamic pressure (p) at the interface. The lower surface of the
layer at z = 0 is considered to be impenetrable (i.e., vz = 0) and shear stress free (i.e., 𝜕v⃗H∕𝜕z = 0). We
assume that L ≫ h and the thin-layer limit applies, such that the approximation can be expressed as an
equality. Integrating equation (13) from z = 0 to z = h:

∫
h

0

𝜕p
𝜕z

dz = p(x, 𝑦, h) − p(x, 𝑦, 0) = Π − p(x, 𝑦, 0) = −Δ𝜌gh, (15)

where Π(x, y) = p(x, y, h) is the dynamic (i.e., departure from hydrostatic) pressure at the top of the layer
(equal to the dynamic pressure at the base of the overlying mantle) and p(x, y, 0) is the pressure at the bottom
of the layer. Substituting equation (15) into equation (14),

𝜇
𝜕2v⃗H

𝜕z2 = ∇⃗H(Δ𝜌gh + Π), (16)

and twice integrating over the layer in z while applying the boundary conditions,

v⃗H = U⃗ +
(

z2 − h2) 1
2𝜇

∇⃗H(Δ𝜌gh + Π). (17)

Integrating the mass conservation equation (5) in z gives

∫
h

0

(
𝜕vz

𝜕z
+ ∇⃗H · v⃗H

)
dz = V − U⃗ · ∇⃗Hh + ∇⃗H ·

(
∫

h

0
v⃗Hdz

)
= 0. (18)

Combining equations (4), (17), and (18), the result is

𝜕h
𝜕t

+ ∇⃗H ·
(

U⃗h
)
= ∇⃗H ·

[
h3

3𝜇
∇⃗H(Δ𝜌gh + Π)

]
. (19)

Equation (19) assumes the form of an advection-diffusion equation governing variations of h. This result
is the same as equation 12 in Hier-Majumder and Revenaugh (2010), except that their expression was
written specifically for axisymmetric geometry at steady state conditions and additionally neglected lateral
variations in dynamic pressure Π at the top of the layer.

3. Basic Analysis of the ULVZ Equation
3.1. Importance of Mantle Dynamic Pressure Variations
Large-scale flow in the overlying mantle is governed by momentum equations similar to equations (6) and
(7). The horizontal length scale L that controls the lateral movements of the ULVZ layer is a scale that should
be characteristic of larger-scale mantle convection patterns. The vertical length scale of mantle convection
H is typically expected to be much larger than the thickness of the ULVZ layer (i.e., H ≫ h). Substituting
these length scales for the spatial derivatives in equations (6) and (7), we have

𝜇m

( 1
H2 + 1

L2

)
𝛿vz +

𝛿Π
H

+ 𝛿𝜌mg ∼ 0, (20)

𝜇m

( 1
H2 + 1

L2

)
𝛿vH + 𝛿Π

L
∼ 0, (21)

where 𝛿𝜌m is the magnitude of density fluctuations that drive mantle convection through the buoyancy force
(∼1%),𝜇m is the overlying mantle viscosity, and 𝛿Π is the dynamic pressure variations associated with mantle
convection. Using 𝛿vH∕𝛿vz ∼ L∕H from conservation of mass and combining equations (20) and (21),

𝛿Π ∼ 𝛿𝜌mgL
(H∕L)2

1 + (H∕L)
. (22)

Mantle dynamic pressures should be compared with the magnitude of pressure changes associated with
variations in the thickness of the ULVZ layer (i.e., Δ𝜌gh),

𝛿Π
Δ𝜌gh

∼
(
𝛿𝜌m

Δ𝜌

)(L
h

) (H∕L)2

1 + (H∕L)
. (23)
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While it is possible that 𝛿𝜌m∕Δ𝜌 ∼ 10−1 if ULVZ are ∼10% more dense than overlying mantle, the ratio
L∕h should be large (by 1 or more orders of magnitude) consistent with the assumptions of the thin-layer
approximation. If H ∼ L for the largest scales of mantle convection, then we are forced to conclude that Π is
not necessarily small in comparison to Δ𝜌gh, and therefore, it cannot be safely neglected on the right-hand
side of equation (19). We will accordingly retain pressure variations in the model and examine their role in
more detail in a later section.

3.2. Deformation of the Overlying Mantle by Thinning/Thickening of ULVZs
When the ULVZ layer migrates laterally in a uniform mantle flow, then there is no dynamic coupling
between the ULVZ internal deformation and the overlying mantle. Instead, the layer is passively swept
along in the mantle “wind.” However, when the ULVZ thins (or thickens) by processes related to gravita-
tional relaxation, it is coupled to viscous deformation of the overlying mantle that may exert an additional
resisting force, and this kind of coupling was not considered in the derivation of the thin-layer approxima-
tion above. Because the mantle may be highly viscous in comparison to ULVZs, neglect of mantle stresses
in treating ULVZ topographic diffusion could potentially lead to inaccuracies and undermine the validity
of the thin-layer approximation. The present situation differs from some common applications of Reynolds'
lubrication theory, such as fluid layers embedded between rigid boundaries (hence fixing h) or fluid layers
situated beneath an inviscid half-space. We therefore assess whether this special case raises any difficulties
in applying the ULVZ equation.

Consider a portion of an existing ULVZ layer of horizontal scale Lt, which is slightly thicker by an amount
𝛿ht relative to surrounding ULVZ material that has a thickness h = h0. In the absence of indirect influ-
ences by mantle convection, the layer will undergo viscous relaxation analogous to diffusion until it has
a uniform thickness, and the anomalously high interface will depress vertically by an amount ∼ 𝛿ht. The
diffusion time for relaxation is ∼3𝜇L2

t ∕(Δ𝜌gh3
0) so that the rate of change in ULVZ topography will be of

order 𝛿vzt ≈ 𝛿htΔ𝜌gh3
0∕(3𝜇L2

t ). The mantle overlying the elevated ULVZ sinks at the same rate 𝛿vzt. The
viscous stress associated with corresponding deformation of the overlying mantle is then 𝜏t ∼ 𝜇m𝛿vzt∕Lt ∼
𝛿ht𝜇mΔ𝜌gh3

0∕(3𝜇L3
t ). If the induced mantle stress is to be neglected in comparison to thin-layer dynam-

ics taken in isolation, then we should expect that it is smaller in order of magnitude (i.e., ∼10 times) than
the pressure effect associated with the topographic relaxation, Δ𝜌g𝛿ht, which implies that the following
condition should be met:

h0

Lt
≤∼

(
𝜇

10𝜇m

)1∕3

. (24)

From this expression we note that the validity of using the ULVZ equation alone (i.e., without explicit cou-
pling to overlying mantle flow) depends on the viscosity ratio between the overlying mantle and the ULVZ
layer itself. In particular, the extent to which h must be smaller than L becomes more strict as the ULVZ
layer becomes less viscous in comparison to the overlying mantle.

In order to assess the validity of neglecting deformation of the overlying mantle, consider a ∼10-km-thick
ULVZ relative to mantle convection length scales of ∼1,000 km. In such a case, the limit in equation (24)
is satisfied for viscosity contrasts as large as 𝜇m∕𝜇 ∼ 105, which extends well beyond previous estimates
for ULVZs (e.g., Hier-Majumder & Revenaugh, 2010). Care should be taken, however, in extending the
thin-layer approximation to more extreme viscosity ratios.

3.3. Expression in Terms of Basal Strain Rate
The manner in which mantle flow varies near the CMB and couples to a thin ULVZ layer can be simplified
using similar arguments as those involved in the thin-layer approximation. The vertical velocity variation
in z can be expanded as a Taylor series:

vz(z) = vz(z = 0) + z
(
𝜕vz

𝜕z

)
z=0

+ z2

2

(
𝜕2vz

𝜕z2

)
z=0

+ … = z
(
𝜕vz

𝜕z

)
z=0

+ z2

2

(
𝜕2vz

𝜕z2

)
z=0

+ … . (25)

The previous development leading to equation (12) demonstrated that 𝜕2vz∕𝜕z2 ∼ h∕L in the context of
a thin layer, and it follows that 𝜕3vz∕𝜕z3 and higher derivatives vary with higher order in h∕L (which are
assumed to be negligible in the thin-layer approximation). At z = h we have

V = −h .
𝜀 + h2

2

(
𝜕2vz

𝜕z2

)
z=0

+ … ∼ h + h2 h
L
+ … , (26)
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where we define the characteristic pure shear strain rate:

.
𝜀 = −(𝜕vz∕𝜕z)z=0. (27)

Taking the horizontal divergence (∇⃗H·) of the horizontal momentum equation (7) and applying h ≪ L
results in

𝜇m∇2
H

(
∇⃗ H · v⃗H

)
+ 𝜇m

𝜕2

𝜕z2

(
∇⃗H · v⃗H

)
− ∇2

Hp = ∇2
H
(
𝜇m

.
𝜀 − p

)
− 𝜇m

𝜕3vz

𝜕z3 ≈ ∇2
H
(
𝜇m

.
𝜀 − p

)
= 0. (28)

This development uses ∇⃗H · v⃗H = − .
𝜀 via equation (5).

The solution to equation (28) is

p = 𝜇m
.
𝜀 + 𝜓, (29)

where 𝜓 is any function that satisfies ∇2
H𝜓 = 0. In a horizontally periodic domain such as the mantle, the

only solution is 𝜓 = constant, which we can take to be zero since this term is acted upon by the gradient
operator. Therefore, we setΠ = 𝜇m

.
𝜀, in which case the equation governing variations in a chemically distinct

ULVZ layer becomes

𝜕h
𝜕t

+ ∇⃗H ·
(

U⃗h
)
= ∇⃗H ·

[
h3

3𝜇
∇⃗H(Δ𝜌gh + 𝜇m

.
𝜀)
]
. (30)

Note that this equation contains two different viscosities, 𝜇 and 𝜇m, representing values appropriate for the
ULVZ and the overlying mantle, respectively.

3.4. Basic Aspects of the ULVZ Equation
The dynamical behavior of a thin layer and its relationship to overlying mantle flow is relatively straightfor-
ward to describe using the equations developed above. Equation (30) can be expanded to give

Dh
Dt

= 𝜕h
𝜕t

+ U⃗ · ∇⃗h = − .
𝜀h + ∇⃗H ·

(
Δ𝜌gh3

3𝜇
∇⃗Hh

)
+ ∇⃗H ·

(
𝜇mh3

3𝜇
∇⃗H

.
𝜀

)
, (31)

where D∕Dt denotes the time derivative in a Lagrangian frame of reference moving with velocity U⃗. The
first term on the right-hand side of equation (31) represents thinning or thickening of the layer driven by
flow divergence or convergence, respectively. For a spatially uniform h and constant .

𝜀 the solution for layer
evolution dictated by this remaining term is simply

h = h(t = t0) exp
[
− .
𝜀(t − t0)

]
. (32)

The influence of horizontally divergent or convergent flow is to thin or thicken the layer with an e-fold time
scale of 1∕ .

𝜀.

The second diffusion-like term on the right side of equation (31) represents the viscous relaxation of
variations in layer thickness. The effective diffusivity of topography variation is apparently

D =
Δ𝜌gh3

3𝜇
, (33)

which is sensitive to layer thickness. Note that the diffusivity of topography is small for small h but becomes
rapidly stronger (varying as h3) when h grows in magnitude. This behavior will later be seen to satu-
rate/flatten ULVZ topography as the layer thickens, since variations in topography diffuse more rapidly
where the layer is thick.

The third term on the right side of equation (31) reflects the action of dynamic pressure variations imposed
from above by large-scale flows. These pressure variations can also drive flows within the ULVZ layer,
resulting in changes in the layer thickness.
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3.5. Nondimensionalization
Consider a layer of average global thickness h0, to which the layer would eventually decay in the absence
of viscous coupling to mantle deformation. Assuming a reference length scale L, time scale 𝜏, and denoting
nondimensionalized quantities with a prime, we can rewrite equation (19) as

𝜕h′

𝜕t′
+ ∇⃗′

H ·
(

U⃗ ′h′
)
= ∇⃗′

H ·
[

Duh′3∇⃗′
H(h

′ + Π′)
]
, (34)

where

h′ = h
h0
, (35)

t′ = t
𝜏
, (36)

∇⃗′
H = L∇⃗ H, (37)

U⃗ ′ = U⃗ 𝜏

L
, (38)

Π′ = Π
Δ𝜌gh0

=
𝜇m

.
𝜀

Δ𝜌gh0
, (39)

and there is a nondimensional parameter that scales the diffusivity of topography variations:

Du =
Δ𝜌gh3

0𝜏

3𝜇L2 . (40)

Assuming estimates of Δ𝜌 ≈500 kg/m3 (i.e., 10%), g ≈10 m/s2, 𝜏 ≈10 Myrs, L ≈5,000 km, 𝜇 ≈ 1018–1021 Pa
s, and h0 ≈100–1,000 m, the parameter Du would assume values in the range Du = 10−11–10−5. The large (6
orders of magnitude) uncertainty in Du is exacerbated by the unknown average thickness h0 and poorly con-
strained ULVZ viscosity 𝜇. Appropriate choice of length and time scales also exerts an important influence
and carries uncertainties that need to be better constrained by other considerations.

In mantle convection models one typically nondimensionalizes the governing equations using a mantle
thickness Lm and thermal diffusion time scale of L2

m∕𝜅, in which case we have

Du =
Δ𝜌gh3

0

3𝜇𝜅
, (41)

which is independent of the mantle length scale Lm. Pressure in mantle convection models that use Lm and
L2

m∕𝜅 as spatial and temporal measures are nondimensionalized by the factor 𝜇m𝜅∕L2
m, so that

Π′ = Π
Δ𝜌gh0

= p′
m

𝜇m𝜅

Δ𝜌gh0L2
m

=
p′

m

Ra
𝜌0𝛼ΔTLm

Δ𝜌h0
=

p′
m

Ra
Δ𝜌TLm

Δ𝜌h0
, (42)

where p′
m is the nondimensional deviatoric mantle convection pressure, 𝜌0 is a reference density, 𝛼 is the

thermal expansivity, ΔT is the super-adiabatic temperature change, and

Ra =
𝜌0g𝛼ΔTL3

m

𝜇m𝜅
(43)

is the Rayleigh number. The quantity Δ𝜌T is the thermal density change that drives purely thermal mantle
convection.
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3.6. Advection Versus Diffusion and Steady State Relations
Advection-diffusion-type problems are sometimes characterized by comparing the magnitude of the advec-
tion term relative to the diffusion term, leading to a nondimensional “Peclet number” (Pe). In the context
of mantle convection, Pe usually refers to the advection of heat relative to thermal diffusion:

PeT = U∇T
𝜅∇2T

∼ ŪL
𝜅
, (44)

where Ū is the characteristic advective velocity for transport and 𝜅 is the thermal diffusivity. In the present
case of ULVZ advection-diffusion, we could define an analogous Peclet number:

PeU = U∇h
D∇2h

∼ ŪL
D

= 3𝜇ŪL
Δ𝜌gh3 . (45)

If a steady state solution to an advection-diffusion equation exists for a particular scenario, then it follows
that Pe →∼1 as t → ∞. In linear problems the solution trends toward Pe ∼1 for a given velocity field by
adopting a steady length scale LS. A typical example (e.g., Hernlund, 2010) is a steady thermal boundary
layer of thickness LS ∼ 𝜅∕Ū. In the ULVZ equation the nonlinearity of diffusivity offers an additional degree
of freedom, and at steady state we expect

h3

L
→

h3
u

Lu
∼ 3𝜇Ū

Δ𝜌g
, (46)

which permits both h and L to evolve to the values hu and Lu that balance advection and diffusion. This
relationship will be used later in analyzing our numerical modeling results for the steady state shape of
ULVZs.

4. Numerical Solutions of the ULVZ Equation
In this section we explore time-dependent solutions of the ULVZ equation in order to understand the basic
behavior of a compositionally distinct dense layer embedded at the CMB. We first examine the case of an
imposed steady mantle flow and consider the time evolution of an initially uniform ULVZ layer to steady
state. We then turn our attention to ULVZ evolution in a time-dependent mantle flow for mantle convection
at relatively high Rayleigh number.

4.1. Notes on the Numerical Treatment of the ULVZ Equation
The ULVZ equation (34) is an advection-diffusion equation that can be integrated using standard numerical
techniques, although we have found that special care should be taken in treating the nonlinear diffusiv-
ity term. In the following examples we employ finite volume flux-limited advection and implicit diffusion,
while pressure is treated as a source term. The advection, diffusion, and source term evolutions are treated
independently. For the diffusivity, we use values of h

′
from the previous time step to obtain an estimate

of the solution at the next time step. We have found that implicit time integration is needed for diffusion
owing to the large variations in diffusivity (d = Duh′3) that typically arise and evolve with the solution.
In our finite volume scheme, the diffusivity needs to be interpolated from locations where h

′
is naturally

defined (e.g., cell centers) to intermediate points (i.e., cell vertices). Care must be taken in this step when
sharp edges of ULVZ structures arise as part of the solution. We use a harmonic interpolation of the diffu-
sivity 2d1d2∕(d1 + d2) between adjacent values d1 and d2 when | log(d1∕d2)| < 1 and linear interpolation
(d1 + d2)∕2 when | log(h1∕h2)| ≥ 1.

4.2. Evolution of a ULVZ Layer in an Imposed Mantle Flow
We first examine numerical solutions for a thin layer situated between a downwelling and upwelling center
in the deep mantle. We assume a particular form for the flow velocity in the mantle (Figure 2) and solve the
ULVZ equation for the evolution of the layer. This affords an opportunity to examine the characteristics of the
solution in detail. We consider two geometries: a 2-D Cartesian case where the upwelling and downwelling
flow on either side of the domain is sheetlike, and an axisymmetric case in which a cylindrical upwelling
is situated at the axis of a convergent flow at the CMB. In these models we choose the horizontal distance
between downwelling and upwelling centers Lr as a length scale and the residence time 𝜏r = Lr∕U0 as a
time scale, where U0 is the characteristic horizontal flow velocity at the CMB. Under these conditions the
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Figure 2. Schematic illustration of the context for the evolution of a ULVZ layer in an imposed mantle flow.

parameters are defined as

Du,res =
Δ𝜌h3

0

3𝜇U0Lr
(47)

and

Π′ =
𝜇m

.
𝜀

Δ𝜌gh0
=

𝜇mU0

Δ𝜌gh0Lr

.
𝜀′ = 𝜇′

m
.
𝜀′, (48)

where .
𝜀′ = .

𝜀𝜏r is the nondimensionalized strain rate computed from the imposed mantle flow (see below).
In practice the parameter we vary in these cases is 𝜇′

m.

4.2.1. Two-Dimensional Cartesian Flow
In 2-D Cartesian coordinates we define

vx = ∫
x

0

.
𝜀(x′)dx′, (49)

vz = − .
𝜀(x)z. (50)

For a given function .
𝜀(x) these relations satisfy the conservation of mass and horizontal momentum in the

vicinity of a thin layer at the CMB. For the particular examples below we will use the simple flow pattern:

.
𝜀(x) = −𝜋

U0

Lr
cos

(
𝜋x
Lr

)
, (51)

which yields ux = −U0 sin(𝜋X∕Lr) with upwelling mantle flow at x = 0 and downwelling flow at x = Lr.
4.2.2. Axisymmetric Flow
We also consider the behavior of the thin layer in axisymmetric coordinates. Using an axial radius s we define

vs =
1
s ∫

s

0
s′ .
𝜀(s′)ds′, (52)

vz = − .
𝜀(s)z. (53)

Again, for a given function .
𝜀(s) these relations satisfy the conservation of mass and horizontal momentum

in the vicinity of a thin layer at the CMB. For the 2-D axisymmetric model examples below we use a similar
flow to the 2-D Cartesian case,

.
𝜀(s) = −4

U0

Lr

(
2 − 3s

Lr

)
. (54)

This gives a horizontal velocity of us = −4U0s̄(1 − s̄) (where s̄ = s∕Lr) with downwelling flow at s = Lr and
upwelling flow at s = 0.

HERNLUND AND BONATI 7911



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017218

Figure 3. Evolution of the ultralow velocity zone layer for Cartesian and axisymmetric models when the influence of
nondimensional diffusivity Du and dynamic pressure 𝜇′m is varied (a–d). The height of the ultralow velocity zone layer
is initially set to h0 = 1 (yellow) and subsequently evolves until it reaches steady state (dark purple).
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Figure 4. Ultralow velocity zone coverage at the core-mantle boundary (CMB) as a function of topography diffusivity
Du, for Cartesian and axisymmetric models (a) with and (b) without taking dynamic pressure effects into account. The
dashed lines have slopes 1/4 and 2/7, as dictated by the power law in equation (60).

4.3. Time-Dependent Solutions
The time evolution of ULVZ layers, beginning from an initially flat state, is plotted in Figure 3. In almost
every case, when Du ∼1 the layer remains continuous, with only modest undulations in the topography
developing under the influence of the imposed mantle flow. In cases where Du ∼ 10−1 or smaller, the ULVZ
layer is swept toward the upwelling center and accumulates into a compact structure with sharp lateral
boundaries bounded by regions with rapidly thinning ULVZ material (consistent with equation (32)). The
time required for ULVZs to accumulate into isolated patches can be seen to be on the order of the residence
time for mantle circulating through the CMB region Lr∕U0, and in all cases a steady state is attained by
≈ 2Lr∕U0. This short equilibration time implies that dense ULVZ material at the CMB should not stably
reside away from upwelling centers for geologically long periods of time, and its horizontal translation is
controlled by lateral mantle flow.

The effect of dynamic pressure is to thicken the ULVZ profile at the axis of upwelling, giving the ULVZ an
increasingly sloped profile as 𝜇′

m and Du increase. For reference, if we assume that 𝜇m = 1020 Pa s, .
𝜀=10−14

sec−1, Δ𝜌 =500 kg/m3, g =10 m/s2, and h0 = 2 km, then we would have 𝜇′
m = 10−1. These parameters

are uncertain, and therefore, the behavior of ULVZ at the CMB might occur in any of the forms shown
in Figure 3. The total magnitude of the pressure effect in the governing equation is proportional to both
Du and 𝜇′

m, and the influence of pressure is therefore greatest when both parameters become large. When
𝜇′

m = 1 the pressure effect can be great enough to create a distinct ULVZ island for Du = 1 (Figure 3d) even
though the layer would be continuous in the absence of pressure effects (Figure 3a). For modest values of
𝜇′

m (Figures 3b and 3c), the solution for Du = 1 begins with an island; however, it eventually evolves to a
continuous layer at steady state.

4.4. Steady State Characteristics
For all parameters in which the layer is laterally discontinuous (see Figure 3), ULVZs exhibit sharp lateral
edges and a relatively flat upper surface at steady state. Smaller values of diffusivity lead to more compact
structures, while larger diffusivity leads to broader features. Note that the height is plotted relative to a
reference height h0 and that the integrated volume in the 2-D Cartesian case differs from the axisymmetric
scenarios. In Figure 4 we plot the lateral (map area) coverage of the ULVZ layer as a function of Du. Areal
coverage is defined here as

𝜙u =
(

Lu

Lr

)N

, (55)

where Lu is the horizontal width of the ULVZ patch at steady state, N = 1 for the Cartesian case, and N = 2
for the axisymmetric case. Our results show a power law variation in the coverage of ULVZ patches 𝜙u as a
function of Du of the form 𝜙u ∝ (Du)a. The power law index a apparently assumes a different value depend-
ing on whether a 2-D Cartesian or axisymmetric geometry is considered. This relation breaks down when
dynamic pressure is more important (right panel of Figure 4); however, it only has a significant influence at
the largest values of Du.

The relation 𝜙u ∝ (Du)a can be understood by applying the steady state relations derived previously. First,
we note that conservation of layer volume implies that

𝜙u ≈ 1
h′

u
, (56)
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Figure 5. Snapshot of a solution for Rayleigh-Bénard convection showing
the nondimensional temperature field and the ultralow velocity zone
(ULVZ) layer profile (black features at the bottom). The ULVZ thickness is
nondimensional, and they are vertically exaggerated here (relative to usual
ULVZ thicknesses) in order to render them visible in the figure.

where h′
u is the steady state characteristic thickness of the ULVZ patches.

We rewrite equation (46) as

h3
u

Lu
∼

3𝜇 .
𝜀uLu

Δ𝜌g
, (57)

where .
𝜀u is the horizontally convergent strain rate (velocity gradient) in

the vicinity of the upwelling. We have substituted Ū ∼ .
𝜀uLu because the

velocity is variable in the vicinity of the upwelling center, and hence, the
layer (where it is thick) is subject to a different effective Ū depending on
its width Lu. While this only accounts for the linear variations in velocity
near the upwelling center, it is sufficient to predict the observed power
law behavior.

The above cases are defined in terms of Du,res; however, the power law
value a can be derived by adopting another definition of Du, namely,

Du,loc =
Δ𝜌gh3

u

3𝜇 .
𝜀uL2

u
, (58)

and at steady state we see from equation (57) that Du,loc ∼ 1. This result can be manipulated as follows:

1 ≈ Du,loc = Du,res

(
U0
.
𝜀uLr

)(
Lr

Lu

)2

(h′
u)

3 = Du,res

(
Lr

Lu

)
(h′

u)
3 = Du,res

(
1
𝜙u

)1∕N+3

, (59)

where we have substituted U0 = .
𝜀uLu and used equations (55) and (56) to relate the expression to 𝜙u.

Rearranging this result, we arrive at

𝜙u ≈
(

Du,res
)N∕(1+3N)

. (60)

As shown in Figure 4, the power law slopes of a = 1/4 and a = 2/7 (for Cartesian and axisymmetric geome-
tries, respectively) predicted by this relation agree reasonably well with the numerical results when the effect
dynamic pressure is not taken into account (see Figure 4a).

4.5. Implementation of the ULVZ Equation in Mantle Convection Models
The ULVZ equation can be solved for the evolution of a dense layer at the base of a convecting mantle
and is straightforward to include in mantle convection codes. Here we show an example of solutions for
the ULVZ equation in a Boussinesq, incompressible, isoviscous, infinite Prandtl number, bottom-heated
convection model with free-slip upper and lower isothermal boundaries, and periodic side boundaries. The
model was run using an Earth-like Rayleigh number of 5 × 106 (yielding time-dependent Rayleigh-Bénard
convection). The numerical implementation is similar to the imposed mantle flow cases above; however,
horizontal velocities at the lower boundary of the convection model are taken from the solution at each
step for lateral advection of the ULVZ layer. The thermal convection model is run until characteristics reach
a statistically steady state, and then a uniform thickness ULVZ layer is introduced, and then the solution
for both the convection and the layer is resumed. For the example shown here, the influence of dynamic
pressure is excluded since it only affects the shape of ULVZs. Time-dependent convection in these models
causes hot plumes to migrate toward one another and merge, vacating a portion of the boundary layer and
allowing new plumes to form away from preexisting plumes.

Figure 5 shows a snapshot of the evolution of the ULVZ layer for Du = 1 and neglecting the influence of
dynamic pressure (i.e., 𝜇′

m = 0). In this case Du is defined using the mantle thermal diffusion time scale
according to equation (41). The solution rapidly evolves to a state in which the ULVZ layer is aggregated into
two distinct islands residing beneath upwelling thermal plumes. The ULVZ material follows these plume
roots as they migrate laterally. The regions between these ULVZ islands do not contain any significant ULVZ
material (i.e., h

′
≈ 0). Once the initial aggregation of ULVZ layer material beneath upwelling plumes has

occurred, new plumes that form in the thermal boundary layer (away from preexisting plumes) have no
source of material to aggregate a new ULVZ island. Thus, there are two populations of plumes: longer-lived
plumes with ULVZ islands and younger plumes with no islands. We note that ULVZ structures beneath
mobile plumes exhibit a sloped top, with the thicker portion at the leading edge and the thinner portion at
the trailing edge. However, the inclusion of dynamic pressure could alter this effect owing to its contribution
to a sloped ULVZ topography discussed in the previous section.
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5. Constraints on ULVZ Physical Properties and Deep Mantle Flow
In a previous study Hier-Majumder and Revenaugh (2010) used the thin-layer approximation to arrive an
an estimate for the viscosity of ULVZ, and our results offer additional support for the use of ULVZ structure
to infer physical properties. However, it is important to emphasize that the quantity that can be constrained
by this approach is actually D (or Du), which is comprised of a combination of parameters that includes
both the viscosity and density anomaly and is scaled by poorly constrained characteristics of mantle flow.
In a previous development we derived a way of expressing Du using a local definition that contains fewer
uncertain terms and refers more specifically to the ULVZ structure, and this is most similar in nature to the
approach utilized by Hier-Majumder and Revenaugh (2010).

In equation (59) we used Du,loc ∼ 1 to explain the power law relationship between areal coverage 𝜙u and
Du across a broad parameter range (in addition to differences in the 2-D Cartesian and axisymmetric scal-
ing behavior). The relation Du,loc ∼ 1 may also be applied directly to seismic observations. For example,
the geometry of an axisymmetric ULVZ rooted beneath Iceland is approximately constrained by the recent
waveform analysis of Yuan and Romanowicz (2017). Using their values of hu ≈15 km and Lu ≈ 400 km,
along with Δ𝜌∕𝜌 ≈0.1 (Rost et al., 2005), and g = 10 m/s2, we then have 𝜇 ≈ 4 × 104∕ .

𝜀u. This implies that
𝜇 ∼ 1018 Pa s if .

𝜀u ∼ 10−14 s−1. This strain rate is plausible if this ULVZ is located at the root of a deep-seated
upwelling Iceland plume, a context in which strain rates of 10−13 s−1 or larger might be permitted (e.g.,
upwelling plume flow velocities up to ∼1 m/year fed by a ∼1,000-km-wide root gives .

𝜀u ∼ 10−13 s−1). Fur-
thermore, if the ULVZ density anomaly is smaller than our assumed value of 10%, then the estimate for
ULVZ viscosity must be smaller by a similar amount. Therefore, we consider 𝜇 ∼ 1018 Pa s to be consistent
with these seismic constraints, although we should be mindful of seismological uncertainties in hu (which
are amplified as h3

u in Du,loc).

Another method for inferring Du is to employ the power law relation with the areal coverage 𝜙u of ULVZ
on the CMB. The 𝜙u constraint shows that the determination of Du is not confounded by dynamic pressure
variations for ULVZ coverages of order ∼10% or less, which may be appropriate for the ULVZ coverage of
the Earth's CMB. (Figure 4). For example, suppose that 𝜙u ≈10% at the Earth's CMB. Then, depending on
whether the mantle flow occurs in a 2-D or axisymmetric context, the results in Figure 4 imply that Du should
be in the range Du,res = 10−4 − 10−3. If we use .

𝜀u ∼ 10−14 s−1, 𝜇 ∼ 1018 Pa s, and Δ𝜌∕𝜌 ≈0.1, consistent with
the Iceland case above, then the 𝜙u ∼10% constraint implies that h3

0∕L2
r ∼ 10−1 or less. Taking Lr ∼1,000 km

as an example then yields h0 ∼1 km. That is, the average global thickness of the ULVZ (if it were spread
evenly over the CMB) is inferred to be of order 1 km, which is not dissimilar to some proposed estimates
(Hernlund & McNamara, 2014).

6. Summary
The numerical examples described above illustrate that ULVZs comprised of a thin dense chemically dis-
tinct layer will quickly aggregate beneath upwelling centers on time scales of order 𝜏r (the residence time for
mantle flow through the CMB region). Therefore, if ULVZs are indeed comprised of dense chemically dis-
tinct material, then we would expect them to be prefentially accumulated at the roots of deep-seated mantle
plumes, or perhaps the edges of LLSVPs (Hernlund & Tackley, 2007; McNamara et al., 2010). This picture is
consistent with a reported geographical correlation between hot spots that may be produced by deep-seated
hot mantle plumes and the locations of ULVZs at the CMB (Williams et al., 1998). In our models, the edges
of ULVZs are sharp, and the remainder of the CMB away from plume roots is bereft of ULVZ material, per-
haps explaining why some areas of the CMB have no ULVZs present (e.g., Persh et al., 2001; Vidale & Benz,
1992). While this picture may be consistent with some observations, it is not clear that all reported ULVZs
can easily be placed in the context of localized upwelling centers. If ULVZs can be identified in contexts that
clearly contradict the predictions of the thin dense layer model, then those may require another causative
explanation.

Our results in inferring the physical properties of ULVZs are in agreement with those obtained by
Hier-Majumder and Revenaugh (2010) and broadly consistent with ULVZs that are ∼10% more dense and
having a viscosity of 1018 Pa s or smaller. Such a small viscosity and strong density contrast implies a sig-
nificant difference in composition between ULVZs and overlying mantle, consistent with our treatment of
a ULVZ as a thin compositionally distinct layer. Large viscosity contrasts might also be consistent with the
presence of partial melt, which may be enabled by a ULVZ composition that endows the material with a

HERNLUND AND BONATI 7915



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017218

lower solidus temperature compared to the overlying mantle. However, when coupled with the large density
constrast, partial melt must be coupled with (and perhaps induced by) the change in composition between
ULVZs and overlying mantle. Recall that smaller density anomalies require proportionally smaller viscosi-
ties in order to satisfy the constraints derived above, causing difficulties for any argument that does not
involve changes in composition.

The ULVZ equation represents a unique tool for exploring the dynamics of the CMB region. This time evo-
lution equation can be added to any mantle convection code, allowing modelers to consider ULVZ dynamics
in a variety of scenarios with relative ease and little computational expense. The results obtained by applying
the ULVZ equation lend more confidence to the interpretation of these features as compositionally distinct,
dense, and relatively low viscosity material. In the future this equation may also be useful for inclusion
in statistical boundary models (e.g., Wu et al., 2011), interpreting seismological observations of ULVZ, and
may facilitate studies that seek to combine dynamical modeling and waveform analysis (e.g., van den Berg
et al., 2010).
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