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INTRODUCTION

Solid-medium high-pressure devices are in widespread use 
for the replication of conditions that exist in the Earth�s interior, 
or for the synthesis and study of materials at high pressures and 
temperatures. The typical solid-medium device consists of a ram 
that exerts a force on an arrangement of anvils, which in turn 
exert forces on a solid but ductile container for the sample. An 
electrically heated resistance furnace may be placed inside the 
container, with a thermocouple and a sample. Due to practical 
fabrication considerations, the geometry of the innermost parts 
of the sample assembly is often (but not always) cylindrical, or 
can be closely approximated as cylindrical.

The primary advantages of solid-medium high-pressure tech-
niques include a relatively large sample volume, stable temperature 
control, and the ability to perform long duration experiments. Fur-
ther advantage could be obtained by controlling the temperature 
distribution using carefully designed assemblies. Uncontrolled ther-
mal gradients, on the other hand, not only decrease the temperature 
resolution of experiments, but may also lead to anomalous effects 
in the chemistry of the sample (Schmidt and Ulmer 2004). 

Thermal gradients in solid samples are the result of heat 
transport by conduction. Because it is seated inside a cylindri-
cal furnace, the temperature inside a sample tends to increase 

radially from its center. Also, the furnace has a Þ nite axial 
extent, inducing heat conduction along the assembly axis and 
causing cooler temperatures to prevail away from the center of 
a sample in the axial direction. Thus a simple assembly consist-
ing of a uniform thickness furnace and solid-medium materials 
produces roughly paraboloid isotherms (opening in the axial 
direction away from the sample center) with temperature varia-
tions sometimes exceeding 100 °C across the sample. This gives 
rise to the hourglass-shaped compositional or phase layering 
frequently observed in high-pressure samples. The problem is 
exacerbated when the furnaces are short relative to their radii, 
decreasing the axial extent and enhancing axial conduction. Ex-
amples of high-pressure experiments where this is the case are 
multi-anvil experiments (Kawai and Endo 1970; Walker et al. 
1990) with assembly sizes on the order of a few millimeters, and 
experiments using opposed-anvil presses such as the Bridgman 
device (cf. Ringwood and Major 1966) and the Drickamer cell 
(Funamori and Yagi 1993; Yamazaki and Karato 2001).

Several types of measurements can be made to estimate or 
calibrate the thermal gradients in high-pressure experiments. 
One such calibration would be measurement of a standard 
temperature relative to the temperature of the thermocouple; 
for example, determination of the melting front in a single 
component metal (e.g., gold) as a function of the temperature 
at a nearby thermocouple (Bertka, pers. comm.). Or, more than 
one thermocouple may be placed in selected locations in the * E-mail: kurtl@asu.edu
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assembly, and the temperatures compared; due to experimental 
limitations, two thermocouples are normally used, providing two 
discrete points in the thermal proÞ le (cf. Gwanmesia et al. 1990). 
A multi-phase sample with a calibrated, temperature-dependent 
reaction between some of the phases, such as the two-pyroxene 
geothermometer (e.g., Walter et al. 1995; Bertka and Fei 1997), 
could also be used to study the thermal gradient. Recently, van 
Westrenen et al. (2003) used variations in the thickness of the 
reaction front between MgO and Al2O3 as a sensitive and detailed 
measure of the temperature gradient (Watson et al. 2002). All of 
these experimental techniques provide information about thermal 
gradients in actual experiments. Finally, the hourglass-shaped 
phase or chemical segregation in many experimental samples, 
although not usually giving the magnitude of the temperature 
gradient, often reveal the shapes of the isotherms.

In addition to these experimental methods, it would be very 
useful to obtain reliable a priori quantitative estimates of ther-
mal gradients in solid-medium assemblies from the geometry 
combined with the heat output of the furnace and the thermal 
conductivities of the samples and other materials. This could 
be used for many purposes, such as reÞ nement or extension of 
experimentally measured thermal gradients to a larger region 
in space, collection of information about thermal gradients that 
have not yet been directly measured, and guidance in the design 
of new assemblies having well-regulated internal temperature 
distributions. Another reason to desire good thermal models is 
that the thermal gradient can be sample- and capsule-dependent, 
which requires a means of transforming the gradients measured 
in one conÞ guration into gradients relevant to each experiment. 
Also, a well-controlled temperature distribution might eventu-
ally allow accurate measurement of both the thermal diffusivity 
in time-dependent heating experiments (e.g., Katsura 1997) 
and the thermal conductivity of a sample. In practical terms, 
the expense involved in materials and time spent preparing and 
analyzing adequate experimental temperature calibrations can 
be substantially reduced when replaced or supplemented by a 
realistic numerical model.

In this paper, we present a numerical model for calculating 
thermal proÞ les in solid-medium high-pressure cell assemblies. 
The model begins with the assumption of axi-symmetric geom-
etry. The outer boundaries of the cylinder are constrained to be 
either uniform temperature or insulating (i.e., zero-heat ß ux). The 
model allows for temperature-dependent thermal conductivities 
of the materials used in the cell assembly, including the sample. 
Heat sources may be placed anywhere within the assembly to 
represent the heat output of the furnace. The model itself is 
based on a ß ux-conservative numerical approximation that will 
be described in detail in the sections that follow. The model 
was used to calculate several standard types of furnace design 
in current use and to compare their features, and we found that 
the known aspects of their thermal gradients were reproduced 
to a good level of accuracy.

Another recent numerical investigation of temperature dis-
tributions has been applied to solid medium experiments in the 
piston-cylinder apparatus (Schilling and Wunder 2004), illustrat-
ing the usefulness of such models in designing and understanding 
experiments. Our model differs in many respects from this and 
other previous ones. Because our model describes steady-state 

cases, no information regarding density or heat capacity is neces-
sary. Our model also uses an approximate analytical expression to 
account for temperature variations inside the anvils, and therefore 
includes, in a simpliÞ ed way, the entire press. We implemented 
an efÞ cient multigrid solver in our code that can return steady 
solutions in a small amount of computational time, and allows 
for the use of dense grids for accurate modeling of small physical 
details. Finally, the model we present here has been thoroughly 
validated against analytical solutions for several scenarios, and 
we have included a graphical user interface with the code, to 
facilitate its use by the high-pressure experimental community 
(the program is deposited with this paper).

MODEL DESCRIPTION

Governing equations

In many practical applications, thermal diffusion is a simple 
linear problem where modest variations in temperature allow 
the modeler to assume that the thermal conductivity of the 
medium is constant. However, in environments exhibiting 
extreme temperature variations, such as heated solid-medium 
high-pressure assemblies, the corresponding variations in thermal 
conductivity are often signiÞ cant. In this case, the heat equation 
is given by:

ρcPT
·
 = ∇

→
 � (K∇

→
T) + Q   (1)

where ρ is the density of the medium, cP is its speciÞ c heat, T is 
the temperature, K is the thermal conductivity, Q is the heat pro-
duction per unit volume, ∇

→
 is the gradient vector, and an over-dot 

signiÞ es a derivative with respect to time t. Equation 1 is non-
linear, because K is a function of the dependent variable T.

Applying the condition of axi-symmetry, with radial coor-
dinate r and axial coordinate z, in the time limit of steady-state, 
Equation 1 assumes the form:
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Note that the steady-state temperature distribution does not 
depend on the thermal inertia, ρcP, and therefore information 
regarding density and speciÞ c heat is not necessary. Our as-
sumption of axi-symmetry for octahedral assemblies leads to a 
negligibly small error in the temperature estimates near the center 
of the assembly. On the basis of a spherical harmonic analysis, 
one can show that this error propagates into the sample region 
with terms such as r�1, where r� is the absolute distance from the 
center of the sample and l is the harmonic degree. For a linear 
octahedral perturbation to an axi-symmetric solution, the leading 
order terms will have l ≥ 4, and thus decrease rapidly from the 
outer assembly into the sample region; the perturbations cancel 
at the center of the octahedron. For example, using a 14/8 mm 
octahedron with a sample 3 mm in diameter, we estimate that 
the octahedral perturbation at the sample edge will be reduced 
to less than 2% of the perturbation at the anvil faces. The same 
result is also obtained for assemblies having a cubic pressure 
medium. We thus conclude that the assumption of axi-symme-
try is reasonable for thermal modeling of the sample volume in 
multi-anvil assemblies to a Þ rst order.
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Numerical model

The numerical model was constructed over a domain of 
discrete rectangular cells using a ß ux-conservative formulation 
(cf. Oran and Boris 1987). The heat ß ux was deÞ ned at the 
center of cell faces and the temperature was deÞ ned at the cell 
centers, while the composition and heat production of each cell 
was taken to be uniform over its entire area. If we discretize the 
domain using ri = (i + 1/2)Δr and zj = (j + 1/2)Δz as the cell-
center coordinates, where Δr and Δz are the radial and axial cell 
dimensions respectively (see Fig. 1), i = 0,1,...,Nr � 2, Nr �1, 
and j = 0,1,...,Nz � 2, Nz �1, the second-order ß ux-conservative 
approximation to Equation 2 is:
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where we have used subscripts to represent the value of a function 
at a given discrete coordinate position, e.g., for the temperature 
T(ri,zj) = Ti,j. The numerical formulation given by Equation 3 is a 
local expression for the conservation of energy in each cell (i.e., 
heat in equals heat out).

This particular discretization requires values for the thermal 
conductivity at cell faces, while thermal conductivity is naturally 
deÞ ned at cell centers. For these cell-face values, we used the 
so-called �harmonic interpolant� for the conductivity, which was 
constructed in such a way that it preserves the continuity of heat 
ß ux between adjacent cells and therefore exhibits a close cor-
respondence to the physical process. The required conductivity 

values in Equation 3 are given by:

Ki+1/2,j = 2Ki,jKi+1,j / (Ki,j + Ki+1,j), (4a)

Ki,j+1/2 = 2Ki,jKi,j+1 / (Ki,j + Ki,j+1). (4b)

Closure of the system of equations generated by Equation 3 
requires suitably chosen boundary conditions at the edges of the 
domain. These boundary conditions are enforced by introducing 
rows of �ghost cells� just outside the domain (for i = �1, i = Nr, 
j = �1, and j = Nz) having the same dimensions as the adjacent 
interior cells. For a Þ xed temperature boundary condition, the 
ghost cells are assigned values such that the linear interpolant 
between the ghost cell temperature and the adjacent interior 
cell temperature yield the desired value. For a zero heat-ß ux 
boundary condition, the temperatures inside the ghost cells are 
assigned the same temperature as that in the adjacent interior 
cell. Because both of these boundary conditions are second-order, 
they preserve the overall second-order accuracy of the system 
generated by Equation 3. In addition, second-order accurate 
estimates of heat ß ux across Þ xed temperature boundaries are 
also made possible by this discretization. In all cases, the values 
of thermal conductivity in ghost cells are equivalent to those in 
the adjacent interior cells.

A critical aspect is the accurate reproduction of heat genera-
tion due to Ohmic dissipation in the furnace, as furnace design 
Þ gures prominently in the achievement of controlled thermal 
gradients. For a furnace having a total electrical resistance R 
across the entire assembly, an electric current I passing through 
it produces a total power of P = I2R = VI, where V is the applied 
electric potential. Assuming zero loss through the rest of the 
circuit, all of this energy is dissipated as heat in the furnace, so 
that values determined from the power supply should give a good 
estimate of the total heat input in the assembly. In this model, the 
furnace is divided into discrete slabs that are in series, one slab 
per grid layer in the model. The relative heat production of each 
slab of cells within the furnace is set to be inversely proportional 
to the cross-sectional area it presents to the in-series current ß ow. 
This ensures that thin furnace parts produce a greater amount of 
heat than thick parts, e.g., in a stepped-furnace conÞ guration, and 
also allows for either axial ß ow or radial ß ow in each furnace 
component, so that combination designs such as telescoping or 
box furnaces may be modeled. The heat sources are thus, for a 
given total current I:

Qi,j = (I / Ai,j)2ρi,j (5)

where ρi,j is the resistivity at the point (i,j), and Ai,j is the cross-
sectional area of the furnace at the point (i,j) and perpendicular 
to the current ß ow; i.e., 2πrih for a radially directed furnace 
element of height h, or π(r2

outer � r2
inner) for an axially directed 

furnace element with outer radius router and inner radius rinner. In 
cases where furnace parts are not carrying signiÞ cant amounts of 
current, such as the graphite pickup cap in the Watson assembly 
(see below), the furnace part is not assigned any heat output and 
simply behaves as any other passive or non-heating assembly 
part. The total power is obtained by taking the volume integral 
of Q over the grid, taken as a sum over the cells, and also multi-

FIGURE 1. Layout of the computational grid showing the control 
volumes (or cells) and the cell-center locations where temperature and heat 
production are deÞ ned (circles). The heat ß ux and thermal conductivity 
were deÞ ned at the cell edges. The total number of cells along r is Nr, 
and along z is Nz, and each of these quantities was restricted to powers of 
2. Also, in all of our calculations, only square grid elements were used, 
so that Δr = Δz. The bold face type in the cells indicate the values for i 
and j, while the radial and axial distances from the origin are indicated 
along the edges. The arrows indicate that many rows and columns of cells 
between the four corners are omitted from the diagram.
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plying by a symmetry factor s which is 1 if the entire furnace is 
modeled, and 2 if only half the furnace is modeled:

P = 2πs
i j,
∑ Qijri+1/2ΔrΔz. (6)

In cases where resistivity is constant, this power can be com-
pared to the theoretical power for the circuit, and was found to 
converge to the theoretical power as the grid density increases, 
as expected.

We ignore for the time being any segregation of the current 
into parallel shells due to temperature variation of conductivity 
in the direction perpendicular to the current ß ow, meaning that 
a �heat pipe� effect such as that hypothesized by Walker (pers. 
comm.) for thick lanthanum chromite furnaces is not considered. 
This effect may be tested in future versions of the model.

Boundary conditions

The model has four boundaries, deÞ ned by (1) r = 0, (2) r 
= rmax = NrΔr, (3) z = 0, and (4) z = zmax = NzΔz. The boundary 
conditions for the model were chosen to most closely match 
the situation encountered in a solid-medium apparatus while 
maintaining numerical simplicity and avoiding the necessity of 
introducing more parameters into the model. First, there are some 
necessary physical constraints on the boundaries. One constraint 
is that the boundary corresponding to r = 0 (i.e., the cylindrical 
axis of the model) is a zero horizontal-ß ux boundary because it 
lies on an axis of symmetry. A second constraint is that part or 
all of the remaining boundaries in the model act as heat sinks. In 
our model a heat sink is a segment or segments of the boundary 
that are held at a selected temperature.

When a cell assembly has mirror symmetry perpendicular to 
the cylindrical axis, the numerical problem may be simpliÞ ed by 
choosing the z = 0 plane as a zero-ß ux boundary; this plane then 
coincides with the mirror plane in the cell assembly, and only 
one quadrant of the assembly cross-section has to be explicitly 
modeled. If the assembly is not mirror-symmetric, then the whole 
length of the assembly can be modeled by setting both the z = 0 
plane and the z = zmax plane as isothermal boundaries.

It is simplest, and involves the fewest ad hoc assumptions, 
to impose the condition that all portions of the boundary that act 
as a heat sink are at a uniform temperature T1. This assumption 
is justiÞ ed when the anvils have a signiÞ cantly higher thermal 
conductivity than the pressure medium and when the boundary 
is sufÞ ciently far from the sample. This boundary can be placed 
several millimeters into the anvils and this does not signiÞ cantly 
affect the thermal gradient in the sample, an assertion that is eas-
ily tested by moving the boundary and recalculating the thermal 
gradient. However, the total power requirement was found to be 
signiÞ cantly affected by this boundary position. Also, the tem-
perature at this boundary is considerably higher than the ambient 
temperature (the anvils become hot during experiments), so the 
choice of the proper temperature for this boundary is a signiÞ -
cant issue.

To account for this in the least arbitrary fashion, we introduced 
a model for the effect of the press on the thermal proÞ le. In this 
model, we assumed that the press conducts heat away from the 
assembly toward some external heat bath maintained at a cooler 
temperature T2 (e.g., cold water circulated through the outer 

portions of the press, or air at room temperature), which is at a 
distance of hundreds of millimeters. We modeled the press as a 
large spherical-shell steel container with an effective radius r2 on 
the order of hundreds of mm, surrounding an assembly with ef-
fective radius r1 on the order of 10 mm. The volume of the model 
(including the mirror image part if an axial boundary is a mirror 
plane) was used to set r1 according to V = (4/3)πr3

1. The power 
from the furnace was modeled as a uniformly emitting source 
within the inner boundary at r1, i.e., the furnace was assumed to 
behave like a point source at r = 0 on the scale of the press. This 
geometry has an explicit solution (Carslaw and Jaeger, 1959):

T1 = T2 + [P / (4πK)](1/r1 � 1/r2) (7)

In this formula, P is the total furnace power, T1 is the tem-
perature of the inner boundary of the press in contact with the 
high-pressure cell (which will be matched to the outer boundary 
of the Þ nite-difference model), T2 is the temperature of the water 
or air bath outside the press, and K is the thermal conductivity of 
the press. Because r2 >> r1, this parameterization is not sensitive 
to the choice of r2. It is worthwhile to note that Equation 7 is a 
linear function of the source power, a result that is independent 
of the assumption of an effective spherical geometry for the 
press, e.g., one Þ nds a similar relation for a cylindrical or square 
press, with a different geometrical constant. In the experiments 
presented here, we used a press radius r2 of 114 mm, which was 
based on the distance from the sample to the isothermal boundary 
of a Walker module with a water-cooling jacket.

The model also includes the choice of having the temperature 
at the isothermal boundaries of the numerical grid Þ xed to a con-
stant value, which is useful in instances where the temperature 
at the boundaries is known.

SOLUTION METHOD

The discretized equations were improved from an initial guess by employing 
a multigrid technique that utilizes a red-black Gauss-Seidel smoother at each grid 
level (Brandt 1977). By using a multigrid scheme, the amount of computational 
work required to achieve convergence is proportional to the number of grid points, 
whereas the work required in time integration (i.e., Jacobi-type) or Gauss-Seidel 
relaxations on the Þ nest grid only is proportional to the square of the number of 
grid points. This increase in efÞ ciency allows for the use of Þ ner grids, permitting 
a detailed analysis of the thermal proÞ les and the effects of thin components such 
as metal foils. The best convergence was achieved when the model cells had a unit 
aspect ratio, thus we take Δr = Δz. Also, a multi-grid requires coarsening of the 
computational domain, so that Nr and Nz must be chosen as a power of two (i.e., 
2, 4, 8, 16, 32, �). This means in practical terms that the model is restricted to 
having a unit aspect ratio or an aspect ratio that is a power of two.

To test convergence, two methods were used. The Þ rst method used a global 
integration over the residual error in Equation 3, which measures the degree of 
local conservation of energy. If N (= NrNz) is the total number of points inside the 
domain, the root-mean-square of the residual error is deÞ ned by:

1 2

N
resi j

i j
,

,
∑   (8)

where summation over i,j excludes ghost cells and resi,j is the local residual of 
the governing equation, equal to the right-hand side of Equation 3. When both 
the temperature and conductivity values satisfy Equation 3, the residual must be 
zero. In practice, computers can never achieve a zero residual due to round-off 
and other sources of intrinsic errors, so the convergence criterion was chosen to 
make the root-mean-square of the residual error smaller than the truncation error 
of the scheme itself. Secondly, the sum of the total heat ß ux out of the constant-
temperature boundaries of the model should converge to a value that is equivalent 
to the sum of all the heat sources in the model. This is given by
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where the first sum on the left-side is taken over the boundaries, and !
F n K T T r zi j i j, ,

� ,� = −( ) ( )ghost in ∆ ∆  is the heat ß ux normal to the boundary where 
Tghost is the ghost cell temperature and Tin  is the adjacent interior cell temperature. 
This second criterion is a measure of the global conservation of energy, which is 
satisÞ ed when the ß ux-conservative formulation is used.

PHYSICAL PROPERTIES OF CELL COMPONENTS

As has been mentioned, the physical properties needed to 
calculate thermal gradients in multi-anvil cells are the thermal 
conductivities and the electrical conductivities of the relevant 
materials. The accuracy of the model is probably most sensitive 
to these material properties, which vary widely from material to 
material and may be dependent on details such as phase changes, 
chemical doping, and pressure as well as temperature. Because 
so little information is available about these effects, we have 
mainly surveyed the data available for the temperature-depen-
dent thermal conductivities at atmospheric pressure, while the 
electrical conductivities have been largely derived from the total 
furnace conductivity observed in our high-pressure experiments. 
The pressure effect is thought to be much smaller than effects of 
temperature in sufÞ ciently stiff materials without phase transi-
tions (e.g., Hofmeister 1999).

The thermal conductivity coefÞ cients used in the calculations 
are shown in Table 1, and the variations with temperature are 
shown in Figures 2a and b. We restricted the analysis to poly-
nomial Þ ts that reproduce the data points but are not reliable for 
extrapolation. Models suitable for extrapolation will be desirable 
in the future for reliable results at very high temperatures. 

Figure 2 shows that the thermal conductivity variations with 
temperature are very pronounced for some materials, and less 
so for others. This has effects on the relative contrast between 
materials; for example, the common idea that MgO is an excel-
lent heat conductor compared to ZrO2 becomes less true at high 
temperatures. Thus the efÞ cacy of MgO as a heat distributor 
when placed inside zirconia is not as good as might be expected. 
This will be evident in some of the thermal gradients that are 
derived from the model.

For the electrical resistivity of graphite and lanthanum 
chromite, we used an Arrhenius temperature dependence of 
the form:

ρ = ρ0e�A/RT (10)

The coefÞ cients for graphite (ρ0 = 8.85·10�6 Ω·m, A = 2.35 
kJ/mole) were taken directly from Schilling and Wunder (2004), 
both for consistency with that study, and because these numbers 
give reasonable agreement with the overall resistance and the 
temperature dependence of resistance observed in our multi-anvil 
experiments using graphite furnaces. For the lanthanum chro-

TABLE 1. Thermal conductivity coeffi  cients used in this study, and references
Material k = a + bT + cT2 + dT3 + gT–0.5 (W/m ⋅ °C) Data Reference

  a b c d g T range (°C)*

MgO –2.523E+01 2.356E–02 –2.108E–05 7.493E–09 7.012E+02 100-1200 Kingery et al. (1954)
            1000-1800 McQuarrie (1954)
Mo 1.303E+02 –2.820E–02 2.064E–06     230-2225 Hampel (1961)
LaCrO3 3.979E+00 –5.368E–03 3.979E–06     30-725 Sakai and Stolen (1995)
Al2O3 4.799E+00 –1.461E–02 7.016E–06   2.726E+02 100-1800 Kingery et al. (1954)
Pyrex-7740 1.052E+00 –9.439E–17 3.663E–06     100-500 Kingery (1959)
Pt 7.126E+01 –3.486E–03 1.726E–05     30-725 Laubitz and Van Der Meer (1966)
C (graphite) 1.546E+02 –1.482E–01 6.065E–05   3.241E+01 30-725 Tayloret al. (1968)
NaCl (2.9GPa) –8.964E+00 3.278E–03     2.384E+02 330-725 Fujisawa et al. (1968)
ZrO2 1.904E+00 3.307E–04 4.645E–08     100-1400 Kingery et al. (1954)
WC 6.300E+01          25 (typical value for WC)
 Steel  5.000E+01         25 (typical value for 4340 steel)

* This column gives the range of temperature where measurements were made for each material. 

ZrO2

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Temperature(°C)

T
he

rm
al

 C
on

du
ct

iv
it

y 
(W

/m
°C

)

Mo

Pt

C (graphite) 

MgO 

Al2O3

0

5

10

15

20

0 500 1000 1500 2000

Temperature (°C)

T
he

rm
al

 C
on

du
ct

iv
it

y 
(W

/m
°C

)

MgO 

Al2O3

NaCl

LaCrO3

Pyrex 
ZrO2

FIGURE 2. Thermal conductivities of materials modeled in this study, 
showing data points that were used in the Þ tting, and the Þ tted curves. 
(a) Focusing on the materials with higher thermal conductivities. (b) 
Focusing on the materials with lower thermal conductivities.

a

b



HERNLUND ET AL.: A THERMAL MODEL FOR HIGH-PRESSURE CELL ASSEMBLIES300

mite resistivity, we derived values (ρ0 = 4.16·10�4 Ω·m, A = 8.91 
kJ/mole) that are consistent with the resistances we measured in 
experiments with a straight LaCrO3 heater in a 14/8 assembly. It 
should be noted that the pre-exponential factor ρ0 has no effect 
on the temperature gradient, only on the overall resistance of the 
heater; however, the quantity A in the exponent has a signiÞ cant 
effect on the temperature gradient. For platinum, we assumed a 
constant resistivity of 1.035·10�7 Ω·m.

Validation of the numerical approximation

To verify the numerical model, we tested it against exact 
solutions, which are available in special cases. For example, 
when a uniform, planar heat source was placed halfway along 
z, and the boundary temperatures at r = 0 and r = rmax are set to 
a temperature T1 while the boundary at z = zmax was a zero-ß ux 
boundary, the temperature distribution within a uniform layer of 
material was linear, as expected. One way to test for the behavior 
in the r-direction is to compare the calculated temperature to 
the temperature distribution due to a linear heat source inside a 
composite circular cylinder, consisting of an arbitrary number of 
layers of material with differing thermal conductivities that are 
independent of temperature. This problem has the closed-form 
solution (Carslaw and Jaeger 1959, p. 190):

T T
Q r r

K
= +0

0

2

ln( / )

π
 (11)

where T is the temperature at any point within a cylindrical 
shell, T0 is the temperature at the outer boundary of the shell, Q 
is the heat ß ow through the inner boundary of the shell per unit 
length, and K is the thermal conductivity of the shell, assumed 
to be independent of temperature. In the numerical model, the 
inÞ nite cylinder is obtained by deÞ ning the boundaries at z = 0 
and z = zmax to be zero-ß ux boundaries, and the boundary at r = 
rmax to be an isothermal boundary.

The solutions are compared in Figure 3, for composite cyl-
inders composed of MgO (a relatively good thermal conductor) 
and ZrO2 (a good thermal insulator) with their room-temperature 
conductivity values. We used a thermal conductivity for MgO of 
55.2 W/m·K (Hofmeister, 1999) and for ZrO2 of 1.91 W/m·K. In 
these tests, we adjusted the electric current through the graphite 
rod until the surface of the rod reached a temperature of 1000 
± 0.1 °C. This was done because it resembles the calculation 
methods presented here for multi-anvil assemblies, where the 
electric current is adjusted until the thermocouple temperature 
reaches a desired value. The Þ rst reasonable approximation to 
the analytical solution was obtained for a grid size of 64 × 64, 
where the RMS temperature error was 0.4% of the graphite sur-
face temperature. A closer match was obtained for a grid size of 
128 × 128, where the rms error in temperature was 0.1% of the 
graphite surface temperature. Convergence in electric current 
and furnace power were around 1 to 2 percent. These results 
will vary with the individual geometries used. It should also 
be noted that the temperatures in Table 2a are based on linear 
interpolation between the grid points, and this also introduces 
an error, especially when the point is on a kink in the thermal 
proÞ le. Thus, the best measure of the Þ delity of a given model 
is the rms error, and the model can be considered most valid at 
the grid points themselves.

Alternatively, the power may be held constant at the analyti-
cal value for 1000 °C, while the temperature Þ eld is solved. The 
results of such an approach are shown in Table 2b. In this case, 
the temperature accuracy is about four times worse. Fixing the 
temperature at one �known� point (such as the thermocouple) and 
letting the power change leads to a more accurate temperature 
proÞ le for the types of problem of interest here.

This test problem also demonstrates the importance of the 
harmonic interpolation described above for sharp boundaries 
in thermal conductivity. When simple linear interpolations of 
conductivity are used at material boundaries, the system still 
converges toward the expected values as the number of cells 
is increased, but the convergence is much slower. In general, 
the temperatures nearer the center are underestimated when 
harmonic interpolation is not used, or equivalently the power is 
overestimated for a Þ xed internal temperature. The discrepancies 
occur at internal material boundaries, and the eventual conver-
gence is due to the importance of the boundaries diminishing 
as the number of points increases. In light of this result, we 
adopted the harmonic interpolation scheme in all of the calcula-
tions presented here.

The effect of boundary distance and boundary condition was 
tested using four calculations on one real cell assembly. The 
�G2� multi-anvil cell assembly (Gwanmesia et al. 1990, also 
described in the results section) was used for these tests. Two 
boundary conditions, one at constant temperature (25 °C) and 
one modeling the press environment as an insulating container, 
were used; in both cases the boundary of the numerical grid was 
moved from 6 mm to 12 mm distance from the center point, to 
measure the effect on the temperature distribution. The press 
container was assumed to be made of steel with a thermal con-
ductivity of 50 W/m·K.

As may be seen in Table 3, modeling the press environment 
reduced the effect of moving the boundary on the thermal Þ eld 
in the sample by a factor of nearly Þ ve. The effect of moving the 
boundary on the calculated power required to reach 1200 °C was 
also reduced, by a factor of two. Including the press environment 
thus had the effect of �softening� the boundary effect on the 
quantities of interest. Because the real press environment (i.e., 
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FIGURE 3. Temperature proÞ les for a 1 mm-radius graphite rod 
surrounded by concentric cylindrical shells of 1 mm of MgO, 1 mm of 
ZrO2, and 5 mm of MgO, with the surface of the graphite held at 1000 
°C. The outer boundary temperature of the outer cylinder was held at 
25 °C. The black dots show the numerical solution for grid size n = 64; 
the solid line shows the analytical solution for r > 1 mm.
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the Þ rst stage anvil region and module) heats up to a variable 
degree during each experiment depending on the total power 
output, it is thought that the inclusion of the press environment 
not only improves the numerical behavior, but also resembles 
the real situation during a high-pressure experiment. Thus, the 
correction for the press environment was used in all the calcula-
tions presented here, and each result for completeness includes 
the boundary temperature T1 of the numerical grid calculated 
according to Equation 7.

Example calculations

We simulated several multi-anvil assembly designs to dem-
onstrate the use of our model and to test the correspondence 
between model results and experiments. To facilitate comparison, 
all calculations were made using a thermocouple temperature of 
1200 °C. This is a temperature range of broad geological interest, 
but not high enough to require large extrapolations of the thermal 
conductivity equations for most of the materials. The calculations 
were all made with a grid density of 128 for the shortest axis 
(128 by 128 for the square cases). The thermal gradients in the 
sample area are depicted (Table 4) by showing three numbers: 
the temperature at the thermocouple, the temperature at the center 
of the sample, which is a saddle point in the temperature Þ eld, 
and the temperature at the center of the outer edge of the sample, 
nearest the furnace, which is the hottest point in the sample. The 
axial and radial temperature differences and the total temperature 
variation within the sample can be obtained from these numbers. 
Also shown is the temperature gradient at the thermocouple, in 
degrees per millimeter.

The different multi-anvil designs we present here are as-
semblies previously used at the high-pressure laboratories of 
SUNY Stony Brook and Arizona State University (the 14/8 �G2� 
assembly, Gwanmesia et al. 1990), the Bayerisches Geoinstitut 
(the 14/8 �Bayreuth� assembly; Poe, pers. comm.), and the 
Geophysical Laboratory (the 8/3 �Fei� assembly, Bertka and 
Fei 1997; Fei, pers. comm.). The �G2� employs a box-shaped 
or telescoping graphite furnace, a construction that is meant to 
allow a larger sample volume than straight furnaces and is used 

for hot-pressing or sample synthesis. The Bayreuth assembly 
implements both a stepped LaCrO3 or graphite heater, and a 
zirconia ceramic insulating sleeve outside the furnace. The Fei 
assembly uses a metal foil heater with LaCrO3 thermal insulation. 
However, we started with a piston-cylinder design (Watson et al. 
2002) because its thermal gradient is well characterized and acts 
as a good test of the performance of the model in a real case.

Watson assembly. The Watson et al. (2002) piston-cylinder 
assembly employs a straight graphite heater with a graphite 

TABLE 2A.  Current and power per 10 mm segment required to reach 1000 ± 0.1 °C at the surface of a 1 mm radius graphite rod surrounded by 
concentric cylinders of 1 mm thickness of MgO, 1 mm of zirconia, and 5 mm of MgO

n T (r = 1) (°C) T (r = 2) (°C) T (r = 3) (°C) Power (Watts) Current (Amps) rms error (°C)

8 1000 706 536 1470.5 173.3 213.4
16 1000 777 211 204.11 44.18 20.8
32 1000 838 170 204.05 58.89 21.1
64 1000 924 133 262.28 66.77 4.4
128 1000 945 169 262.13 61.67 4.7
256 1000 938 119 245.27 59.60 1.20
512 1000 942 116 245.14 60.75 1.18
Analytical 1000 950.4 111.2 248.4 61.11 0.0

Notes: Temperatures are shown at r = 1, r = 2, and r = 3 mm. The outer boundary temperature of the outer cylinder was held at 25 °C.

TABLE 2B.  Similar to Table 2a, but in this case, the power was constrained to be constant by adjusting the heat sources to match the theoretical 
power value of 248.4 Watts per centimeter, while the temperature fi eld was not constrained at any point

n T (r = 1) (°C) T (r = 2) (°C) T (r = 3) (°C) Current (Amps) rms error (°C)

8 140 111 90 48.73 297
16 645 501 143 48.73 118
32 642 539 116 64.97 136
64 948 876 127 64.97 18.2
128 947 895 114 59.97 17.7
256 1012 950 120 59.97 4.4
512 1013 955 117 61.15 4.4
Analytical 1000 950.4 111.2 61.11 0.0

TABLE 3.  Eff ect of moving the boundary of the numerical grid, with 
and without including the press eff ect

Boundary  Ttc Tmid Thigh ΔT T1 Power Current
distance (mm)

Including the press:
6 1200 1269 1299 99 166 647 205
12 1200 1267 1297 97 93 669 208
With isothermal boundary (25 °C) at boundary distance:
6 1200 1279 1314 114 25 790 226
12 1200 1271 1303 103 25 734 218

Notes: Constant grid density of 0.1875 mm, 14/8 assembly “G2.” Ttc is the 
temperature at the thermocouple; Tmid at the sample center, and Thigh at the 
hottest point along the outer central perimeter of the sample, ΔT is the total 
gradient in the sample, and T1 is the temperature at the outer boundary of the 
numerical grid.

TABLE 4.  Summary of cell assemblies and temperature gradients 
calculated for a thermocouple temperature of 1200 °C, 
and radial grid size of 128

Cell Power  Ttc  Tmid  Thigh  (dT/dz)tc  Tanvil  rmax  T1

 (W) (°C) (°C) (°C) (°C/mm) (°C) (mm)

Watson 19  2396 1200 1215 1218 8 309 15 168
mm piston-cylinder
14/8 “G2” 648 1200 1248 1274 87 310 8 117
14/8 Bayreuth:  390 1200 1222 1224 89 174 8 87
LaCrO3

14/8 Bayreuth:  574 1200 1230 1233 102 294 8 117
graphite
8/3 Fei 202 1200 1236 1249 112 242 5 78

Notes: Ttc is the temperature at the thermocouple, Tmid is at the saddle point at 
the assembly center, and Thigh is at the hottest point in the sample. Tanvil is the 
maximum temperature experienced by the tungsten carbide anvils, and T1 is 
the temperature at the boundary of the numerical grid. The outside of the press 
was held at 25 °C in every case.
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pickup cap on one end. For thermal insulation, concentric sleeves 
of pyrex (inner sleeve) and NaCl (outer sleeve) surround the 
outside of the furnace, and the NaCl allows ductile ß ow of the 
assembly under pressure. The assembly is enclosed in a tungsten-
carbide cylinder, is bounded at one end by a tungsten-carbide 
piston, and at the other end by a stainless steel base-plug. In 
our calculation, we Þ lled the furnace with concentric alumina 
and MgO sleeves, to match the arrangement used to measure 
the temperature estimated by Watson et al. (2002), in which the 
proÞ le along the MgO-Al2O3 boundary was measured by looking 
at the thickness of the reaction layer of MgAl2O4. This assembly 
is asymmetric, so the full assembly was calculated without a 
central mirror plane. Also, the assembly is highly elongated, so 
the calculation used an aspect ratio of 4. The grid size was rmax 
= 128, zmax = 512.

The resulting thermal proÞ le for 1200 °C is shown in Figure 
4a, which shows the model for positive r and all z (or the +r half 
of the total cross-section of the assembly). MgO and alumina 
have similar thermal conductivities at high temperature (Figs. 
2a and b) so the sleeves used for the thermal gradient measure-
ment caused little local perturbation in the temperature contours. 
Because the furnace is elongated, the hot zone of the furnace has 
a signiÞ cant useful length, of over 7 mm, from the point where 
the thermocouple is located (shown as a small circle on the dia-
gram; the thermocouple wire itself is not explicitly modeled in 
any of the current calculations) to the 1200 °C contour on the 
opposite side. For the sample region located in this area with 
a length of 7.6 mm and a diameter of 5 mm, the total thermal 
gradient is 18 °C.

The thermal gradient measurement in Watson et al. (2002) 
was made at a thermocouple temperature of 1400 °C, with the 
thermocouple located at the saddle point in temperature, so we 
also performed a calculation under that condition to test the 
similarity of the model to the measurement. Our axial thermal 
gradient is very similar to theirs, with the region over 1200 °C 
occupying about 50% of the total length of the furnace, and the 
contours in similar locations. The 1200 °C contours are 19 mm 
apart in the measurements by Watson et al. (2002) and 22.5 mm 
apart in our calculation (our dimensions were not corrected for 
compression). The radial gradient in the model is somewhat less 
than in the measurement; the measured radial gradient is over 
20 °C from the center to a radius of 4 mm, while ours is 10 °C 
over the same distance, and there is no 1420 °C contour in our 
model. Despite the differences, the overall agreement is reason-
able. Knowledge of the thermal conductivity of pyrex under 
the conditions of the experiment could be helpful in improving 
this agreement; it is notable that the conditions are well beyond 
the available thermal conductivity measurements for pyrex. It 
appears that the real thermal conductivity of pyrex under these 
conditions may be lower than in our model.

�G2� 14/8 assembly. The Þ rst multi-anvil design tested was 
the �G2� assembly (Gwanmesia et al. 1990; Leinenweber and 
Parise 1994). This assembly is a typical �box furnace� design, 
used to produce large samples. The graphite furnace surrounds 
the sample, providing heat from the ends of the sample as well 
as from around its circumference. The electric current is brought 
to the furnace through molybdenum leads, and the furnace is 
insulated with zirconia ceramic. The sample area is surrounded 

by MgO sleeves, and a platinum capsule and MgO sample are 
used. The capsule is 3.5 mm in outer diameter and 3.2 mm in 
length. Unlike the piston-cylinder assembly of Watson et al. 
(2002), this assembly can be approximated as being symmetrical 
about the central plane; this plane was chosen as the z = 0 plane, 
and the rest of the assembly was generated by a mirror across 
this plane (top edge of the drawing) as well as by the required 
revolution about the r = 0 line (left edge of the drawing). The 
mirror plane and central line were both modeled as zero-ß ux 
boundaries, as described in the experimental section, while the 
other two boundaries acted as heat sinks. The model calculated 
the heat production of the furnace using a radial current ß ow in 
the graphite caps, with a 1/r dependence of current density, and a 
constant current density in the cylindrical part of the furnace. The 
thermal proÞ le calculated for this assembly is shown in Figure 

FIGURE 4. Thermal proÞ les calculated for the Watson 19 mm piston-
cylinder assembly. The physical size of the model was 15 mm by 60 mm, 
and the model had an aspect ratio (zmax/rmax) of 4, with a grid density of 
128 × 512. The r-axis is to the right and the z-axis is down in this and the 
other assembly pictures (Figs. 4-7). The dotted boundaries are isothermal 
boundaries, while the solid boundary is the zero-ß ux boundary at r = 
0. The thermocouple is shown as a circle on each diagram. (a) The full 
thermal proÞ le calculated for a thermocouple temperature of 1200 °C. 
The major contour interval is 100 °C; minor contours are shown at 20 
°C intervals from 1100 °C up. The boundary temperature is 168 °C. (b) 
Temperatures calculated with the thermocouple near the saddle point 
and at a temperature of 1398 °C. The thicker contours are the 1200, 
1300, and 1400 °C contours; contours are shown at a 20 °C interval 
from 1160 °C up. The boundary temperature is 193 °C. This picture is 
drawn with the same contours and is intended for direct comparison to 
Figure 10 of Watson et al. (2002). Materials are (a) Al2O3, (m) MgO, (g) 
C (graphite) (dark gray), (p) pyrex, (s) salt (NaCl), (ss) stainless steel, 
and (c) carbide (WC).

a b
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5. Only the explicitly modeled region (the +r, +z quadrant of the 
assembly) is shown in the Figure.

This assembly has a total calculated temperature difference of 
74 °C across the sample at 1200 °C. Although in designing the 
assembly, MgO was chosen as a thermal distributor around the 
sample based on the fact that its thermal conductivity at room 
temperature is thirty times higher than that of ZrO2, the actual 
difference at the experimental conditions was only a factor of 
two (Fig. 2). This reduces the effectiveness of MgO as a thermal 
distributor, so the gradient in the sample is somewhat larger than 
it would be if the room-temperature thermal conductivities were 
still obeyed; in the hypothetical case where all the components 
retain their room-temperature thermal conductivities, a tempera-
ture difference of 52 °C across the sample would be attained at 
a thermocouple temperature of 1200 °C. ZrO2 still acts as an 
effective thermal barrier because of its overall low conductivity, 
which is similar throughout the temperature region from ambi-
ent temperature to 1200 °C. The primary cause of the gradient 
is the thick molybdenum current ring, which is used to carry the 
high current required for the graphite furnace, but also acts as a 
�coldÞ nger� into the sample area.

Bayreuth 14/8 assembly. The Bayreuth 14/8 assembly (B. 
Poe, pers. comm.) uses either lanthanum chromite or graphite as 
a furnace, and zirconia as an insulator. It also has molybdenum 
pickup rings, but much shorter ones only at the furnace ends, 
and the furnace is an axial �step-heater� with a thicker central 
portion and thinner ends. The step-heater acts somewhat like a 
3-zone furnace, in that the end zones produce more heat and the 
central zone less, but unlike in a 3-zone furnace, the relative heat 
production at each zone is Þ xed in advance by the dimensions 
of the assembly and cannot be varied during the run. The heat 
production of each segment of the furnace was built in to the 
model by making the current density inversely proportional to the 
cross-sectional area of the furnace, as usual. The thermal distribu-
tions calculated for this assembly are shown in Figure 6.

The temperature difference in the sample/capsule area (1.6 
mm in diameter and 2.4 mm in length) calculated for a lanthanum 
chromite furnace is 24 °C and for a graphite furnace is 33 °C. 
Although the full temperature distribution varies between the 
two furnaces, as seen in the Þ gure, due to the differing thermal 
conductivities and the temperature dependence of their electri-
cal conductivities, the differences in the gradients within the 
sample are small. The most signiÞ cant differences are in the 
furnace itself; the lanthanum chromite furnace supports higher 
thermal gradients, due to its low thermal conductivity, and also 
heats more at the ends than at the center because of its higher 
resistance at low temperature. 

The graphite furnace, because of its high thermal conductiv-
ity, has the disadvantage of transferring more heat into the sur-
roundings, so the power consumption is about 50% higher, and 
the anvil temperature is also much higher (Table 4). Ultimately, 
the choice between lanthanum chromite and graphite is made for 
reasons such as avoiding chromium contamination (graphite), 
or avoiding the transition of the furnace to diamond (lanthanum 
chromite). We conclude that for this particular assembly, the 
choice can be made without much concern for its effects on the 
thermal gradients within the sample.

Fei 8/3 assembly. The 8/3 �Fei� assembly (Bertka and Fei 

1997) is an example of an assembly that uses a small metal foil 
furnace. The furnace is made of platinum foil surrounded by 
LaCrO3, which in this case acts as a thermal barrier and not as 
an active heating element (note that the standard experimental 
assembly uses rhenium foil, but platinum was used in the cal-
culation). The inside of the assembly consists of alumina caps, 
an MgO central sleeve, and MgO sample with a length of 1.4 
mm and a diameter of 1 mm (in our model). The thermocouple 
is axial, placed at the cool end of the sample, 0.7 mm from the 
sample center.

The calculated temperature difference in the sample region is 
49 °C. This temperature difference is mainly due to the conduc-
tion out the ends of the assembly, since the thick LaCrO3 sleeve 
in the radial direction is highly insulating. In the real case, the 
thermocouple side has some zirconia cement, so that side might 
be more insulating and the actual gradient asymmetric. Another 
source of asymmetry would be greater heating from the ther-
mocouple side, where slits are cut in the furnace to allow the 
thermocouple to pass through.

The calculated gradient may be compared in a general sense 
to the experimental gradient derived from spinel growth kinet-
ics by van Westrenen et al. (2003) using the same assembly. 
Their experiment L-238 was performed at 1700 °C. Their total 
axial gradients, read from their Figure 7 assuming that the data 
represents a smooth, convex downward axial gradient similar 
to our calculations, are 50 °C in 0.5 mm and 150 °C in 1 mm. 
The calculated values at 1200 °C are 40 and 98 °C. We did 

FIGURE 5. Contour diagram of the calculated temperature Þ eld for 
the 14/8 �G2� assembly. The diagram uses the same contour intervals as 
Figure 4a. The boundary temperature was 117 °C. The grid size for this 
and the next 3 assemblies (Figs. 4-7) was 128 by 128. Materials from 
the center out are: s = MgO sample, platinum capsule (light color), m = 
MgO sleeve, a = Al2O3 rod; r = Mo ring; g = C (graphite) furnace (dark 
color), z = ZrO2 insulation, m = MgO octahedron, and c = WC anvils. 
The physical size of the model is 8 mm by 8 mm.
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not perform a more direct comparison, in lieu of a good model 
for extrapolating the thermal conductivity of LaCrO3 to higher 
temperatures. However, direct scaling of the result from 1200 
to 1700 °C gives values of 68 and 140 °C, which are reasonably 
close to the experimental values.

Conclusions. Several conclusions can be made from these 
sample calculations. First, despite the differences in the assem-
blies calculated, the overall temperature distributions are similar 
in form. The magnitudes of the gradients that were deemed ac-
ceptable by the designers of the assemblies are reß ected in the 
size of the sample region that is utilized in each assembly and 
the temperature difference across that region. At a thermocouple 
temperature of 1200 °C, the total gradient in the sample ranges 
from 24 °C (the Bayreuth 14/8 assembly with a lanthanum chro-
mite furnace) to 74 °C (the �G2� assembly), but with a variety 
of sample sizes and pressure/temperature capabilities, depending 
on the assembly.

One feature that all the multi-anvil assemblies studied here 
have in common is that the thermocouple is placed at a location 
of high thermal gradient, on the order of 100 °C/mm near the 
cold end of the sample. All of the useful volume is taken up by 
the sample, and the thermocouple is placed at the edge of the 
useful volume, where the strong gradients begin. Also, when 
metal capsules are used as in several of these calculations, the 
thermocouple is in a thermal boundary layer, a region of en-
hanced gradients, next to the thermally conducting capsule. This 
means that small differences in positioning of the thermocouple 
can cause signiÞ cant differences in the measured temperatures. 
For these reasons, care needs to be taken in designing experi-
ments to ensure the placement of thermocouples at reproducible 
locations. Also, the value of the thermal gradient in the region 
of the thermocouple, in addition to the thermal gradient in the 
sample itself, needs to be considered in the future design of 
better assemblies.

These examples serve to show the utility of this model for 
analyzing thermal distributions in multi-anvil assemblies and 
learning more about the assemblies from the analysis. The 

FIGURE 6. Calculated thermal gradient for Bayreuth heater (a) 
With a lanthanum chromite furnace, and (b) with a graphite furnace 
The diagram uses the same contour intervals as Figure 4a. The boundary 
temperatures are 87 °C (Fig. 6a) and 117 °C (Fig. 6b). The physical 
size of the model is 8 mm by 8 mm. Materials are s = MgO sample; Pt 
capsule (lighter color); a = Al2O3 rod; r = Mo ring; m = MgO sleeves; 
x = LaCrO3 furnace or g = C (graphite) furnace; z = ZrO2 sleeve, m = 
MgO octahedron, c = WC anvils.

FIGURE 7. Thermal calculation for the 8/3 larger �Fei� assembly. 
The diagram uses the same contour intervals as Figure 4a. The boundary 
temperature is 78 °C. The physical size of the model is 5 mm by 5 mm. 
Materials are s = MgO �sample;� a = Al2O3 rod; Pt furnace (lighter color); 
x = LaCrO3 sleeve; m = MgO octahedron, and c = WC anvils.

b

a
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range of assemblies in actual use is very wide and continuously 
evolving, and a full analysis of the effects of design parameters 
on thermal gradients is a continuing project that will require 
the use of numerical procedures such as the ones outlined here. 
It is hoped that by coupling this analysis with the design and 
testing of real assemblies, the thermal gradients in multi-anvil 
assemblies can be greatly reduced, or the sample volumes for a 
given thermal gradient increased.
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