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Abstract

We present a new finite difference code for modeling three-dimensional thermal convection in a spherical shell using
the “cubed sphere” method of Ronchi et al. [1]. The equation of motion is solved using a poloidal potential formulation
for an iso-viscous, infinite Prandtl number fluid on a finite difference grid and advective transport is implemented using
the 2nd-order MPDATA scheme of Smolarkiewicz [2]. Due to the high efficiency of multigrid acceleration, low memory
requirements, and second-order accuracy of this model, we conclude that the cubed sphere method offers a great deal of
potential for simulating complicated problems of fluid mechanics in spherical geometry.
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1. Introduction

Highly viscous thermal convection in the rocky mantles
of the solid planets is the primary process governing their
thermal and mechanical evolution over long time scales.
This process is driven primarily by the transfer of heat
from the interior to the surface. Because thermal convec-
tion constitutes a non-linear problem, the main tool for
studying finite amplitude convective motions is computer
models. Due to the relative simplicity of the relevant equa-
tions in a parallel coordinate system, Cartesian domains are
often used to obtain an approximation to convective mo-
tions in planetary mantles. This approximation has proven
to be useful for many different problems, although it im-
poses a geometric symmetry between the upper and lower
boundaries which does not exist in spherical geometry.

In the first spherical shell models the most popular
method for solving the relevant equations were spectral,
i.e., using spherical harmonics as basis functions. This
allows a great deal of simplification of the equations
(Chandrasekhar [3]), however, computation of the Leg-
endre transforms can be expensive. The method’s primary
limitation, however, is that the elegance and simplicity are
destroyed when more complicated effects, such as laterally-
varying viscosity, are included, and viscosity varies by
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many orders of magnitude in planetary bodies. In addition,
spectral methods do not offer a straightforward implemen-
tation on parallel computers since the basis functions are
not local.

Recently, there has been an increase in the application
of grid-based methods to mantle convection in spherical
geometry. Methods such as finite elements and finite differ-
ences are local and can therefore more easily accommodate
complex effects such as variable viscosity. They may also
be decomposed for straightforward implementation on par-
allel computers, and thus offer the possibility of very high-
resolution. Another benefit of grid-based methods is that in
most cases it is possible to apply multigrid acceleration to
the solution of the resulting large sets of equations.

Baumgardner [4] developed a finite element spherical
shell convection code using a progressively refined icosa-
hedral projection onto the sphere. In the 1990s this code
was expanded to include the effects of variable viscosity
(Yang [5]). Ratcliff et al. [6] developed a finite difference
model of thermal convection on a spherical polar grid that
included the effects of temperature dependent viscosity.
This code was capable of handling high viscosity contrasts
in a spherical shell, however its usefulness was limited by
the coordinate singularity at the poles.

Ronchi et al. [1] proposed a new method for the solu-
tion of partial differential equations in spherical geometry
consisting of projecting a cube onto a sphere to produce
six separate patches that are then subdivided. The coordi-
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Fig. 1. The horizontal coordinate lines of the cubed sphere grid
on a spherical surface.

nate lines on each patch correspond to great circles that
are perpendicular at the centers of each block (see Fig. 1).
For a finite difference grid constructed on these patches, a
suitable choice for coordinates insures that horizontal ghost
points for every block lie in the same plane as the interior
grid points of neighboring blocks. If the same radial dis-
cretization is maintained on each block, then ghost point
exchanges can be made using simple one-dimensional in-
terpolations. The advantages of this technique are that each
grid block contains no singularities, exhibits a nearly con-
stant horizontal spatial coverage, and coupling the blocks
requires a negligible fraction of the total computational
effort.

2. Basic equations

The equation of motion for an incompressible, infinite
Prandtl number, isoviscous fluid in the Boussinesq approxi-
mation is,

�∇ × �∇ × �∇ × �v = Ra �∇ × (
T �λ)

, (1)

where �∇ is the gradient vector, �v is the velocity vec-
tor, T is the temperature, �λ is the unit “up” vector, and
Ra is the thermal Rayleigh number. It has been shown
(Chandrasekhar [3]) that for this style of convection the
solenoidal velocity field can be written exclusively in terms
of a poloidal potential W ,

�v = �∇ × �∇ × (
W �λ)

. (2)

Finally, the conservation of energy requires that,

∂T

∂t
+∇ · (�vT

) = ∇2T . (3)

Explicit expressions for the curl, gradient, and diver-
gence using the physical components of a vector are given
in Ronchi et al. [1].

3. Numerical technique

Eq. (1) is solved in terms of a poloidal potential us-
ing two second-order equations that satisfy homogeneous
boundary conditions on the inner and outer boundaries.
This approach simplifies the treatment of the boundary
conditions since it only requires one level of ghost points
at the sides of each coordinate block. The finite differ-
ence equations are relaxed using multigrid V-cycles with a
Gauss-Seidel red-black smoother at each grid level. When
the number of radial points is chosen to be equal to half
the number of horizontal grid points on each block, the
residual root-mean-square error decreases by a factor of 5
to 9 for each V-cycle depending on the initial guess. This is
equivalent to the residual reduction observed for a Poisson
solver in Cartesian coordinates using the same method.

Time-integration is treated separately from the equation
of motion using Eq. (3). An accurate treatment of advective
transport remains a challenging problem in numerical mod-
eling. In addition to the usual concerns of implementing
advection on an Eulerian grid, the cubed sphere coordi-
nate system is both curvilinear and non-orthogonal. As a
result, the application of ordinary finite difference schemes
contains subtle complications. Upwind advection schemes
offer stability as well as global conservation of the advected
field, and therefore have desirable qualities that are relevant
to the problem of convective heat transfer. The main source
of error in upwind schemes is related to “numerical dissipa-
tion,” which is caused by truncation of higher order terms
in the finite difference equations. In non-orthogonal, curvi-
linear coordinates, this numerical dissipation is anisotropic
and spatially variable, which leads not only to dissipation
of the advected field but also creates significant grid-related
distortion. A truncation analysis of a simple first-order up-
wind scheme in a non-orthogonal grid reveals that this
numerical diffusivity is greatest along coordinate lines. We
correct for the second order spatial and temporal truncation
errors using the MPDATA technique of Smolarkiewicz [2],
and find that it effectively removes the undesired effects of
the upwind advection technique on the cubed sphere grid.

4. Results and conclusions

Planforms for steady cubic and tetrahedral cases and
a time-dependent case are shown in Fig. 2. The time-
dependent case uses only a single coordinate block with
periodic boundary conditions. Fig. 3 shows the scaling of
two global characteristics with Rayleigh number. The Nus-
selt number is defined as the heat flow relative to the con-
ductive heat flow (in the absence of convective motions).
The presented values are within a few percent of the those
obtained by Bercovici et al. [7], and follow the same pattern
and relative relationships. Fig. 4 shows the CPU time on a
single Athlon XP 1.9 GHz processor required for the first
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Fig. 2. Isosurfaces of constant temperature (T = 0.5) for the steady (a) tetrahedral and (b) cubic planforms at Ra = 7000 and (c)
time-dependent convection in a single block at Ra = 500,000.

Fig. 3. (a) Nusselt number and (b) root-mean-square velocity vs. Rayleigh number for the cubic (dashed line) and tetrahedral (solid line)
planforms of steady-state convection in a spherical shell with a radius ratio of 0.55.

Fig. 4. Run time in seconds for the first 10 time steps in a full
sphere as a function of the number of grid points on a single
Athlon XP 1.9 GHz processor.

10 time steps as a function of the number of grid points,
and demonstrates the efficiency and scalability of this tech-
nique and its potential for handling high resolution grids.
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