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[1] In a companion paper, numerical models reveal that buoyant melting instabilities can
occur beneath extending lithosphere for a sufficiently small mantle viscosity,
extension rate, and rate of melt percolation. However, in some cases, instabilities do not
develop during extension but only occur after extension slows or stops. These results
are suggestive of a critical behavior in the onset of these kinds of instabilities and motivate
a linear analysis to study the onset of instability in a partially melting, passively
upwelling plane layer of mantle beneath extending lithosphere. The model we employ
includes the effects of buoyancy arising from thermal expansion, the presence of a retained
fraction of partial melt, and depletion of the solid by melt extraction. We find a critical
behavior in the onset of instability controlled by melt retention buoyancy that is
characterized by a ‘‘Rayleigh’’ number M, such that M must exceed some critical value
Mcrit which depends on the efficiency of Stokes rise of a partially molten body
relative to the rate of background percolation. Comparison of this theory to the numerical
results in the companion paper yields a close quantitative agreement. We also find that
solid depletion buoyancy can either stabilize or destabilize a partially melting layer,
depending upon both the distribution of preexisting depletion and the magnitude of
density changes with depth. This theory is compared with previous studies of buoyant
melting instabilities beneath mid-ocean ridges where similar behavior was reported, and it
suggests that the stability of passively upwelling, partially melting mantle underlying
both narrow and wide rift settings is controlled by similar processes.
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1. Introduction

[2] Upwelling fertile mantle beneath extending litho-
sphere may undergo decompression partial melting, and is
the typical source of volcanism in most extensional prov-
inces on Earth. Decompression melting of the upper mantle
is associated with a decreased density due to the presence of
a small fraction of melt and changes in composition and
phase abundance in the residual solid rock. Thus if one
portion of a partially melting layer ascends at a slightly
faster rate, it may produce and retain more melt and as a
consequence become less dense than adjacent portions of
the layer. This in turn gives rise to a buoyancy surplus in
faster upwellings that causes them to ascend even more
quickly and produce more melt, thus setting the stage for

a runaway instability. Tackley and Stevenson [1993]
described the kind of instability arising from this scenario
as ‘‘Rayleigh-Taylor-like,’’ given its apparently uncondi-
tionally unstable behavior. This phenomenon has also
been termed a ‘‘decompression melting instability’’ by
Raddick et al. [2002].
[3] The tendency for such instabilities to develop in

partially molten regions of Earth’s mantle has been demon-
strated in numerous numerical studies covering a variety of
geological settings [e.g., Parmentier and Morgan, 1990;
Tackley and Stevenson, 1993; Jha et al., 1994; Barnouin-
Jha et al., 1997; Schmeling, 2000; Choblet and Parmentier,
2001; Raddick et al., 2002]. However, in the companion
paper by Hernlund et al. [2006] (hereinafter referred to as
HTS), numerical models revealed that unstable buoyant
convective motions in a plane layer of partially melting
mantle beneath diffusely extending lithosphere do not
always occur during extension, and in some cases may
develop only after extension slows or stops. These behav-
iors were termed ‘‘synextensional’’ and ‘‘postextensional’’
according to whether instability set in during or after
extension, respectively. Postextensional behavior is favored
by a faster rate of extension, higher asthenospheric viscos-
ity, and increased rate of melt percolation. The distinction
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between these two behaviors was also found to depend on
the depth distribution of solid depletion density changes,
with the requirement that such effects must be significant at
shallow levels of the partially molten zone in order to
promote synextensional behavior.
[4] The results of HTS are thus suggestive of a critical

behavior whereby some physical process is able to dampen
the growth of instabilities during extension. Critical behav-
ior of this type has also been proposed in previous studies of
these kinds of buoyant melting instabilities within partially
molten mantle beneath mid-ocean ridges [Parmentier and
Morgan, 1990; Jha et al., 1994; Barnouin-Jha et al., 1997],
in which the occurrence of instabilities related to decom-
pression melting-generated buoyancy was found to depend
on the spreading rate, viscosity, and rate of melt percolation
in the same manner as the behavior found in HTS. Because
the instability takes place in a plane layer of partially molten
mantle in the latter study, it is apparent that this critical
behavior results from fundamental physical processes with-
in the layer instead of being attributable to any geometrical
complexities present in the case of a mid-ocean ridge.
[5] Critical behavior in the dynamics of fluids occurs in a

variety of scenarios [e.g., Chandrasekhar, 1961], where a
perturbation to a preexisting state may either grow or decay
depending upon the fluid’s physical properties, externally
imposed conditions and dimensions, as well as the nature
(e.g., the magnitude and length scale) of the perturbation. In
many situations a diagnostic parameter describing the
propensity for instability may be used to assess whether
or not unstable behavior is expected to arise in a given
scenario, often by identifying a value for the relevant
parameter corresponding to a state of marginal stability
(i.e., at the locus of parameter space separating stable and
unstable behavior). Familiar examples of significant geo-
physical importance are the critical Rayleigh number Racrit
for the onset of thermal convection in a fluid containing a
thermal gradient parallel to gravity, the critical Reynolds
number Recrit for the onset of turbulence in a laminar flow,
and the critical magnetic Reynolds number Rmcrit for the
sustenance of a magnetic field (i.e., dynamo action) in
conducting fluids.
[6] The situation is complex in the present problem be-

cause up to three sources of buoyancy are present in partially
melting mantle: thermal expansion buoyancy, buoyancy due
to a retained fraction of melt, and buoyancy due to density
changes in the solid residuum following melt extraction.
Additionally, each of these buoyancy sources are subject to
different transport properties, thus complicating a straight-
forward assessment of the essential physics of this process.
HTS found that solid depletion buoyancy promotes synex-
tensional instability only when solid density changes accom-
panying melting are present in the shallow portions of the
partially melting layer. This is potentially important, because
recent estimates by Schutt and Lesher [2006] suggest that
density changes following melt depletion in spinel peridotite
(appropriate for shallower melting of the asthenosphere)
might be significantly smaller than previous estimates [e.g.,
Oxburgh and Parmentier, 1977; Jordan, 1979].
[7] The purpose of the present paper is to identify the

individual roles that each source of buoyancy plays in the
onset of convection in a passively upwelling and melting
plane layer of mantle in order to gain a more clear

understanding of the variety of behaviors observed in both
the companion paper and in previous studies [Parmentier
and Morgan, 1990; Tackley and Stevenson, 1993; Jha et al.,
1994; Barnouin-Jha et al., 1997; Schmeling, 2000; Choblet
and Parmentier, 2001; Raddick et al., 2002]. The approach
used here is to describe the appropriate basic state, subject it
to a small perturbation, and then assess whether and how
quickly instabilities would develop by solving the associat-
ed eigenvalue problem. We find that the critical behavior
observed in previous studies is primarily due to a compe-
tition between melt retention buoyancy and percolation of
melt up and out of the layer, and derive a ‘‘Rayleigh
number’’ M for this process that depends on the rate of
percolation and extension in addition to other properties of
the melt and solid mixture. We also find that solid depletion
buoyancy can only play a role in the onset of instability if
the preexisting depletion gradient is smaller than adiabatic,
which in the present context only occurs in shallower
portions of the partially melting layer, thus explaining the
necessity for significant solid density changes by melt
extraction at shallower levels. Thermal convection instabil-
ity, on the other hand, is less influential due to the buffering
of lateral temperature changes by latent heat. We also
compare the predictions of this analysis with the numerical
results in the companion paper and the study of Jha et al.
[1994], for which a good agreement suggests that this
theory may be applied to the dynamics of partially melting
mantle in a variety of rift settings on Earth, regardless of
whether extension is narrowly or diffusely distributed.

2. Linear Analysis

[8] Here we examine the fate of a linear perturbation to
the equations governing the creeping motion of a plane
layer of asthenospheric mantle undergoing passive upwell-
ing and partial melting as the result of diffuse extension.
Although the basic state for the instability in this case is
generally time-dependent, the relevant variables are consid-
ered to undergo an instantaneous linear perturbation relative
to a temporarily fixed basic state in order to assess whether
and how quickly the instability would proceed at any given
time during the development and growth of a partially
molten layer. In other words, the approach used here is to
consider one-dimensional upwelling and melting in a plane
layer up to a given time, taking a sort of ‘‘snap shot,’’ and
asking whether or not that state is stable or unstable with
respect to small perturbations. This approach is analogous to
the analysis of the onset of thermal (Rayleigh-Bènard-like)
convection in a growing thermal boundary layer [e.g.,
Schubert et al., 2001, and references therein]. In that purely
thermal buoyancy-driven case, the thermal boundary layer
thickness defines a characteristic length scale in the basic
state and is generally an increasing function of time.
However, the actual stability problem is performed upon a
‘‘snap shot’’ of the geotherm (taking advantage of its self-
similarity) at a given time in the evolution and growth of the
boundary layer, and the appropriate Rayleigh number is
expressed in terms of the time-dependent boundary layer
thickness. Thus the analysis only lends insight into whether
the thermal boundary layer has grown to a sufficient
thickness to permit convective instability. The linear anal-
ysis described below is conducted in the same spirit.
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2.1. Mathematical Model

[9] We implement the same model as in HTS, which
should be consulted for details. Here we only give a brief
description of the model and the governing equations before
proceeding to the linear analysis. In this model, the mo-
mentum balance is expressed in terms of an average (i.e.,
barycentric) velocity of melt and solid. Terms associated
with resistance of the matrix to compaction are ignored.
Melt percolation is modeled by a simple form of Darcy’s
law, and is solely driven by the isostatic pressure gradient.
The relevant equations of motion are conservation of mass,
momentum, the momentum difference between melt and
solid phases, energy, melt fraction, and degree of solid
depletion which are modeled by

rrrr � v ¼ 0; ð1Þ

2rrrr � mrrrrvð Þ þ rrrr � mrrrr � vð Þ � rrrrp ¼
� ẑ RaT þ Rmfþ Rdzð Þ; ð2Þ

uẑ ¼ f vm � vsð Þ ¼ Rm

Mr
fnẑ; ð3Þ

@T

@t
þ v � rrrrT ¼ r2T � L _m; ð4Þ

@f
@t

þ v � rrrrf ¼ � @u

@z
þ _m; ð5Þ

@z
@t

þ v � rrrrz ¼ @ uzð Þ
@z

þ _m; ð6Þ

respectively, where rrrr, v, m, p, ẑ, T, f, z, L, u, vm, vs, and _m
are the gradient vector, bulk velocity (volume average of
melt + solid velocity), bulk viscosity, nonisostatic pressure,
upward unit vector, temperature, melt fraction, degree of
solid depletion, latent heat, Darcy flux of melt through the
solid, average melt velocity, average solid velocity, and melt
production rate, respectively. Percolation is modeled
according to porous Darcy flow driven solely by gravity
with a permeability k = k0f

n, where we choose n = 2 in
order to simplify our analysis (we return to the general case
in the discussion). The equations and variables have been
nondimensionalized relative to a depth scale D, a thermal
diffusion timescale D2/k, a temperature scale DT, a
reference viscosity m0 and density r0, resulting in the
appearance of several nondimensional parameters:

Ra ¼ r0gaDTD3

km0

; ð7Þ

Rm ¼ � gD3

km0

@r
@f

; ð8Þ

Rd ¼ � gD3

km0

@r
@z

; ð9Þ

Mr ¼ mmD
2

m0k0
; ð10Þ

where g, a, mm, and k0 are the dimensional values of
gravitational acceleration, thermal expansivity, melt viscos-
ity, and reference Darcy permeability. Ra, Rm, and Rd are
the respective ‘‘Rayleigh numbers’’ for temperature, melt,
and solid depletion derived buoyancy. The quantity Mr is
called a ‘‘melt retention’’ number, since it is inversely
proportional to the rate of melt percolation, and more melt is
retained in the matrix as Mr is increased.
[10] The meaning of the degree of solid depletion z can

be understood by comparing equations (5) and (6). In the
absence of melt percolation and segregation, u ! 0 and the
governing equations for f and z are identical. Thus z is
equivalent to the cumulative volume fraction of melt that
would be retained in the matrix in the absence of segrega-
tion (i.e., for batch melting), and measures the amount of
melt extracted from the solid when u > 0. The melting
model used here is a simple eutectic between two solid
phases, one of which may or may not be relatively more
dense than the other. The degree of melting z is assumed
less than that for which one of the two solid phases would
be entirely consumed, and therefore the temperature does
not rise above the eutectic temperature Ts (which is assumed
linear with depth), nor does the melt composition depart
from the eutectic. This melting model is admittedly sim-
plistic, however, addition of further details arising from
more realistic phase equilibria is not yet justified given the
complexity observed in the simplest models. The theory
described in this paper can nevertheless be straightforwardly
extended to more realistic mantle melting models in the
future.

2.2. Basic State

[11] The basic state profiles for temperature T0, depletion
z0, and melt fraction f0 are considered to be functions of
time and depth only. The bulk upwelling velocity in the
partially molten layer, v0, is taken to be constant for
simplicity; it is also independent of time t in this analysis.
Under these restrictions, the basic state profiles are gov-
erned by the following set of equations:

u0 ¼
Rm

Mr
f2
0; ð11Þ

@T0
@t

þ v0
@T0
@z

¼ @2T0

@z2
� LFv0; ð12Þ

@f0

@t
þ v0

@f0

@z
¼ � @u0

@z
þ Fv0; ð13Þ

@z0
@t

þ v0
@z0
@z

¼ Fv0; ð14Þ
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where u0 = u(f0) is the basic state Darcy velocity and
F (= _m/v0) is the nondimensional isentropic melt produc-
tivity for upwelling flow at the eutectic temperature Ts. In
other words, upwelling of material a distance D along the
eutectic would result in a degree of melting F. (Note that
this quantity is often denoted as dF/dz in other studies; we
instead use F for brevity.) Higher-order terms associated
with the solid compaction flux have been omitted, allowing
for simpler explicit expressions of the basic state profiles.
Appropriate solutions to equations (12)–(14) will be
developed below.
[12] Figure 1 shows the general scenario appropriate to

the formulation of the basic state. For a curved geotherm,
upwelling beneath a linear eutectic initially leads to inter-
section of the two curves at a single point z = z0 at time t =
t0, while further upwelling allows the geotherm to intersect
the eutectic at two different depths: the shallower depth is
denoted zu, while the deeper intersection is denoted zl. In the
region zl < z < zu a partially molten region is formed that
grows with time as upwelling proceeds further for t > t0. In
general, zu and zl are both functions of time (i.e., zu = zu(t)
and zl = zl(t)), because the curvature of the geotherm causes
zl to move downward and zu to move upward from their
initial intersection point (where zl(t0) = zu(t0) = z0), although
one or both of these intersections may saturate at limiting
values if a well-developed quasi-steady upwelling layer is
allowed to form at times t 
 t0. The region zl < z < zu will
be the focus of the linear stability analysis, while variations
in quantities above zu or below zl will usually be ignored
except in the formulation of boundary conditions.
[13] According to the melting model adopted here, T0

follows the eutectic temperature Ts throughout the partially
molten layer, thus the basic state profile for temperature
inside the partially molten layer is simply

T0 ¼ Ts: ð15Þ

It will be important later to recognize that equations (12)
and (15) together require

dT0=dz ¼ dTs=dz ¼ �LF: ð16Þ

This relationship expresses the energy balance between
latent heat absorption by melting and the decrease in
temperature along the eutectic per unit distance of
upwelling.
[14] The equation governing the partial melt profile

(equation (13)) can be recast in the form

1

v0

@f0

@t
þ 1þ 2Umf0

� � @f0

@z
¼ 1; ð17Þ

where f0 = f0/F and Um = RmF/v0Mr. Taking z = z(s) and t =
t(s) where s is a parametric variable, the characteristic
equation belonging to equation (17) can be written as

df0

ds
¼ dt

ds

@f0

@t
þ dz

ds

@f0

@z
¼ 1; ð18Þ

where comparison of like terms in equations (17) and (18)
gives

dt

ds
¼ 1

v0
ð19Þ

and

dz

ds
¼ 1þ 2Umf0: ð20Þ

Equation (19) immediately gives s = v0t, and integrating
equation (18),

f0 ¼ v0 t þ Að Þ: ð21Þ

Using this result to integrate equation (20),

z ¼ Um v0tð Þ2þ 1þ 2UmAv0ð Þv0t þ B; ð22Þ

where A and B are constants that must be determined by
specification of the boundary conditions. The lower
boundary zl of the partially molten layer generally moves
downward in time according to

zl ¼ z0 � f tð Þ; ð23Þ

where f(t) is a generic function of time such that _f (t� t0)� 0
and f(t = t0) = 0, where _f is the derivative of f and t0 is the
time when the geotherm first intersects the eutectic (i.e.,
zl(t0) = zu(t0) = z0). Consider the characteristic curve
emanating from z = zl at time t = tc > t0. As a boundary
condition, we require f0 = 0 on z = zl. Equation (21) then
gives

0 ¼ v0 tc þ Að Þ ð24Þ

Figure 1. Schematic illustration of the scenario for the
basic state, where an upwelling geothermal profile initially
intersects the eutectic Ts at time t = t0 and depth z = z0, while
continued upwelling at times t > t0 leads to the expansion of
a partially molten layer defined by the intersection of the
geotherm at z = zl and z = zu. Both zl and zu are therefore
generally functions of time, such that zl = zl(t) and zu = zu(t).
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and A = �tc since v0 > 0. Equation (22) then gives

B ¼ z0 � f tcð Þ þ Um v0tcð Þ2�v0tc: ð25Þ

Combining equations (21), (22), and (25), the character-
istic solution is then determined by

z� zl tð Þ ¼ f tð Þ � f t � f0=v0
� �

þ Umf
2

0 þ f0: ð26Þ

Only for certain choices of f(t) will it be possible to
explicitly solve equation (26) for f0.
[15] The influence of the function f(t) upon the partial

melt profile in equation (26) is seen to depend upon the ratio
tc = f0/v0, which is the characteristic time lag for equili-
bration between melt production and melt removal by
percolation. In the context of the numerical models in the
companion paper, v0 � 102–103, f0 � 10�2, and F � 0.2 so
that tc � 5 � 10�4–5 � 10�5. In terms of dimensional
units, for a layer of thickness 50 km and a thermal
diffusivity of 10�6 m2 s�1, the effective time lag tc ranges
between 40 ka and 400 ka, which should be compared with
corresponding extension durations of about 2 Ma and
20 Ma, respectively. Thus we conclude that tc is negligibly
small in the present context. In terms of f0 the basic state
solution adopted (in the limit tc ! 0) in the following linear
analysis is then

f0 ¼
F

2Um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 z� zlð ÞUm

p
� 1

� �
; ð27Þ

where again

Um ¼ RmF

v0Mr
: ð28Þ

Differentiation of equation (27) at the base of the partially
molten layer z = zl gives

df0

dz
z ¼ zlð Þ ¼ F; ð29Þ

which is generally valid independently of any previous
approximations regarding tc. Since f0 = 0 at the base of the
partially molten layer, there is initially no percolation of
melt as material enters the layer because all melt is retained
in the limit z ! zl from above (and f0 ! 0). Equation (29)
therefore expresses that material at the very bottom of this
layer (i.e., z < 1/4 Um) initially exhibits a simple linear melt
profile where the increase in melt fraction with z � zl
balances the melt produced per unit distance upwelling F.
For z > zl, this linear increase in f0 is accompanied by a
stronger (quadratic) increase in u0, and as a consequence the
rate of percolation increases to the point where it balances
melt production by transporting melt rapidly to the top of
the layer.
[16] The basic state profile for depletion is generally a

complicated function of the melting history of material
throughout the partially molten layer. Here we will adopt
the most general profile that can be constrained by the initial

and boundary conditions without introducing additional
degrees of freedom. From equation (14) we have

Dz0
Dt

¼ v0F; ð30Þ

where D/Dt is the material derivative. Equation (30) shows
that z0 is simply the cumulative (integrated) degree of
melting experienced by a parcel of material as it upwells
through the partially molten layer. As noted previously, the
temperature in the partially molten region follows the
eutectic temperature, and equations (12) and (14) may be
combined to give (by equating v0F)

DT0

Dt
¼ DTs

Dt
¼ �L

Dz0
Dt

; ð31Þ

which expresses the exchange of latent heat involved in
increasing the degree of melting (or depletion) and the
decrease in the temperature of a parcel of material as it
undergoes decompression melting along the eutectic
temperature. In a Lagrangian frame of reference moving
with velocity v0 ẑ, equation (31) can be integrated to give

z0 ¼ �L�1 Ti þ
dTs

dz
z� zið Þ þ g zð Þ

� �
; ð32Þ

where Ti is the temperature at which melting commenced at
depth zi for the ith solid parcel, and g(z) in this context is a
function that accounts for the history dependence of
material originating in the partially molten layer at different
depths. g(z) can only be completely specified when the
details of the interaction between a particular geotherm and
the eutectic Ts are known. The case under consideration here
is the intersection of a curved geotherm with a linear
eutectic, whose equality at zu and zl requires that the
depletion vanishes at zu and zl, yielding two basic boundary
conditions. Instead of considering an error function profile
used in the numerical models of this process, which leads to
unnecessarily complicated expressions, a second-order
series expansion is adopted for g(z) of the form,

g zð Þ ¼ Az2 þ Bzþ C; ð33Þ

where A, B, and C are new constants unrelated to those
given previously. Vanishing of z0 at z = zl and z = zu yields
two boundary conditions, however, according to equation
(33), there are three constants to be determined. In order to
be consistent with the description of the basic state partial
melt profile f0, an additional boundary condition can be
imposed by noting that the gradient of depletion at z = zl
must be equal to that of the partial melt gradient at z = zl
(where percolation is initially absent). In other words, where
u0 = 0, the governing equations for melt and depletion are
identical, and given the same initial conditions should
initially behave identically until f0 (and hence u0 / f0

2)
becomes larger than infinitesimal. From equation (29), at
z = zl,

dz0
dz

¼ df0

dz
¼ F; ð34Þ
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after which z0 is given by

z0 ¼
F

zu � zl
zu � zð Þ z� zlð Þ: ð35Þ

It is interesting to note that the second-order expansion in
equation (33) together with the vanishing of z0 at zl and zu
implies that zl + zumust be a constant, and therefore zlmoves
downward at the same rate as zumoves upward. Higher-order
expansions for g(z) would allow for a more general variation
of both zl and zu, however, as noted above such an expansion
is not completely constrained by the boundary conditions,
and would therefore introduce additional (unwanted) para-
meters into the analysis.
[17] In the following sections, it will be convenient to

choose zl = 0 and zu = 1 such that the dimensional length
scale D of quantities appearing in the linear stability
analysis (i.e., Ra, Rm, Rd, Mr, F, v0, etc.) are scaled to the
thickness of the partially molten layer. D is accordingly also
a function of time in the basic state, however, as noted
previously the linear analysis will be conducted only
relative to fixed values of t and therefore D will also be
considered to be temporarily fixed in order to evaluate
whether the layer has attained an unstable state. The above
assumptions made in defining the basic state allow each
profile to be expressed in a form that scales in a simple way
with the thickness of the partially molten layer rather than
requiring a significantly different set of profiles as upwell-
ing proceeds further. This is analogous to the manner in
which the self-similarity of an error function geothermal
profile is exploited in the Rayleigh-Bènard instability of a
growing thermal boundary layer embedded in a half-space.
Thus the basic state profiles for temperature, melt fraction,
and depletion become

T0 ¼ Ts; ð36Þ

f0 ¼
F

2Um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4zUm

p
� 1

� �
; ð37Þ

z0 ¼ Fz 1� zð Þ: ð38Þ

The forms of these basic state profiles are illustrated in
Figure 2.

2.3. Equations Governing the Perturbation

[18] As in the case of the onset of thermal convection
[e.g., Chandrasekhar, 1961], the development of a decom-
pression melting instability from the basic state is reduced
to a linear eigenvalue problem by expanding a linear
perturbation of the relevant variables into normal modes
in the horizontal direction and finding solutions for the
eigenvalues belonging to the fundamental eigenmodes as a
function of the various control parameters and subject to
appropriate boundary conditions. Let ~T , ~f, ~z, and ~vz be
linear perturbations relative to the basic state values T0, f0,
z0, and v0, which develop in the moving reference frame
v0̂z, are periodic in a horizontal direction x, and grow or
decay exponentially in time according to an instantaneous
growth rate s, i.e.,

~T ¼ T0 þQ z� v0tð Þ exp ikxþ stð Þ; ð39Þ

~f ¼ f0 þ F z� v0tð Þ exp ikxþ stð Þ; ð40Þ

~z ¼ z0 þ Z z� v0tð Þ exp ikxþ stð Þ; ð41Þ

~vz ¼ v0 þ V z� v0tð Þ exp ikxþ stð Þ; ð42Þ

where k is the wave number of the periodic disturbance and
i =

ffiffiffiffiffiffiffi
�1

p
. Q, F, Z, and V are the respective depth-dependent

amplitudes of the perturbations to temperature, melt
fraction, depletion, and vertical velocity. Note that the
definition of k in section 2 is unrelated to the reference
Darcy permeability, k0.
[19] Upon substitution of the perturbations (39)–(42) into

ẑ � rrrr � rrrr � equation (2), and equations (4), (5), and (6),
ignoring terms of order higher than linear, and assuming a
constant viscosity in the partially molten layer, the equa-
tions governing the perturbation are

d2

dz2
� k2

	 
2

V ¼ k2 RaQþ RmFþ RdZð Þ; ð43Þ

s � d2

dz2
þ k2

	 

Q ¼ �V LF þ dT0

dz

	 

; ð44Þ

s þ c0
d

dz

	 

F ¼ V F � df0

dz

	 

; ð45Þ

s � d

dz
u0

	 

Z ¼ V F � dz0

dz

	 

; ð46Þ

where

c0 ¼
du

dff¼f0

¼ 2f0

Rm

Mr
: ð47Þ

Figure 2. Summary of the basic state profiles for
temperature, depletion, and melt fraction used in the linear
analysis.
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Given appropriate boundary conditions, this set of equations
may be solved to yield the growth rate s. As usual, there is
generally an infinite set of solutions belonging to different
eigenmodes (i.e., Qn, Fn, Zn, and Vn), each of which are
associated with a different value for s (i.e., sn). However,
we will only be interested in the fundamental eigenmode
that yields the largest values for jsj, which is characterized
by V > 0 for all z.
[20] Inserting the basic state value for dT0/dz in equation

(16) into equation (44),

s � d2

dz2
þ k2

	 

Q ¼ 0; ð48Þ

and as a result, Q is completely uncoupled from V.
Therefore temperature plays no role in the onset of
instability in this particular case, and we take Q = 0 for
the remainder of this analysis. This decoupling is a
consequence of the buffering of temperature to a melting
trajectory in the basic state, which is imposed by the eutectic
melting model adopted in this study.
[21] The influence of the basic state profiles f0 and z0

upon the respective role of melt and depletion in the onset
of instability can be understood by inspection of the right
sides of equations (45)–(46). In particular, only differences
between the vertical gradients in f0 or z0 and F allows finite
values for F or Z. This expresses the fact that only
variations in each quantity relative to a simple adiabatic
decompression melting profile can allow lateral variations
to arise from this kind of perturbation, and is analogous to
the requirement of a superadiabatic gradient for the onset of
purely thermal convection.

2.4. Boundary Conditions

[22] The partially molten layer is considered to be over-
lain by a cool lithosphere of substantially higher viscosity.
Although a small fraction of lithosphere might flow in
response to stresses arising from buoyancy in the partially
molten layer, it is treated as rigid for simplicity. Thus the
vertical velocity perturbation V and the associated horizontal
velocities vanish on the upper surface of the layer, and when
combined with mass continuity this gives the boundary
condition

V z ¼ 1ð Þ ¼ d

dz
V z ¼ 1ð Þ ¼ 0: ð49Þ

The nature of the lower boundary can range from being
essentially rigid to completely permeable to bulk flow
depending on whether the viscosity of the partially molten
layer is substantially lower than or equal to the underlying
mantle viscosity. Both permeable and rigid lower boundary
cases are treated here as end-members to bracket a range of
possible behavior (see Figure 3). For a rigid lower
boundary,

V z ¼ 0ð Þ ¼ d

dz
V z ¼ 0ð Þ ¼ 0: ð50Þ

If the lower boundary is permeable to solid flow, the
underlying mantle is considered to respond as a viscous
half-space, and from equation (43) this passively driven
flow is governed by

d2

dz2
� k2

	 
2

V z < 0ð Þ ¼ 0: ð51Þ

The only solution to equation (51) which exhibits V ! 0 as
z ! �1 is

V z < 0ð Þ ¼ a1 þ a2zð Þ exp kzð Þ; ð52Þ

where a1 and a2 are constants. The lower boundary
conditions for the partially molten layer in the permeable
case are determined by continuity of vertical velocity,
horizontal velocity, tangential stress, and viscous traction
(i.e., V is continuous to its third derivative) across z = 0 in
accordance with equation (52):

V z ¼ 0ð Þ ¼ a1: ð53Þ

d

dz
V z ¼ 0ð Þ ¼ ka1 þ a2: ð54Þ

d2

dz2
V z ¼ 0ð Þ ¼ k ka1 þ 2a2ð Þ: ð55Þ

d3

dz3
V z ¼ 0ð Þ ¼ k2 ka1 þ 3a2ð Þ: ð56Þ

The additional two conditions in the permeable lower
boundary case constrain the values of a1 and a2. Another
boundary condition arises by requiring the perturbations to
temperature, melt fraction, and depletion to vanish at the
base of the partially molten layer, for which equation (43)
gives

d2

dz2
� k2

	 
2

V z ¼ 0ð Þ ¼ 0: ð57Þ

One final boundary condition would be needed for
temperature because it is associated with a sixth-order
differential eigenvalue problem, however, as noted above
temperature plays no role in this analysis of the particular
model considered in this study.

Figure 3. Illustration of the two kinds of boundary
conditions considered in the linear analysis. In both cases,
the upper boundary is immobile and rigid, while the lower
boundary may be rigid or permeable to mantle flow.
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2.5. Partial Melt-Derived Buoyancy Only

[23] First, consider the end-member scenario where the
establishment of a buffered temperature profile and a lack of
density changes accompanying solid depletion leaves only
the contribution of partial melt during the onset of instabil-
ity. Combining equations (43) and (45), the perturbed
circulation is governed by

s
co

þ d

dz

	 

d2

dz2
� k2

	 
2

V ¼ k2MV ; ð58Þ

where

M ¼ Mr

2f0

F � df0

dz

	 

: ð59Þ

For a given value of k, the profile M, and suitable boundary
conditions, equation (58) may be solved for the growth rate
s, which will be positive if the perturbation grows, negative
if it decays, and zero if it lies on the margin of stability. The
basic state profile for f0 in equation (37) gives a depth-
dependent function for M,

M ¼ MrUmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Umzþ 1

p ; ð60Þ

the average value of which is

Mavg ¼
Mr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Um þ 1

p
� 1

� �
: ð61Þ

In terms of physical parameters, a good approximation for
the average value of M when melt fractions are small (or
Um 
 1) is

Mavg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DrgFD5

v0m2
0 k0=mmð Þ

s
; ð62Þ

where F appearing in this expression is dimensional and
Dr is the density difference between melt and solid (i.e.,
Dr = rs � rm).

[24] As a reference, first consider the case where M = M0

is a constant, which would only arise if f0 were approxi-
mately constant, giving M ! M0 = MrF/(2f0). This
approximation reduces the analysis to a simple linear
eigenvalue problem that can be solved exactly. The depth-
dependent M case is considered below using numerical
solutions, and the results obtained here serve as a bench-
mark for those calculations. Substituting exp(qz) into equa-
tion (58), the characteristic roots q are governed by

s
c0

þ q

	 

q2 � k2
� �2�k2M0 ¼ 0; ð63Þ

and the solution for V in the partially molten layer is

V ¼
X5
m¼1

bm exp qmzð Þ; ð64Þ

where bm are five constants and qm are the five distinct roots
of equation (63). Applying the boundary conditions to
equation (64) and factoring out the constant coefficients bm
yields a matrix whose determinant must vanish to ensure the
existence of a nontrivial solution.
[25] Solutions for the growth rate over a range of M0

obtained by the above procedure are shown in Figure 4,
where the results are given in terms of a normalized growth
rate S = s/c0M0 for a single value of k = kcrit (discussed
below). S increases monotonically with M0 from negative to
positive values, and saturates as M0 ! 1. The maximum
saturating values for S, denoted Smax, are found to be (1)
both boundaries rigid, Smax � 0.01453 for k � 4.57, and (2)
upper boundary rigid, lower boundary permeable, Smax �
0.03725 for k � 2.17. The most interesting result is that M0

is analogous to a ‘‘Rayleigh number,’’ in that it must exceed
some critical value (Mcrit, say) in order for the instability to
proceed (i.e., for s > 0). Setting s = 0 in equation (63), the
variation of Mcrit over a range of values for k at marginal
stability is obtained and the results are shown in Figure 5.
Defining kcrit to be the value of k that minimizes Mcrit (i.e.,
M0 when s = 0), the solution procedure outlined above
gives (1) both boundaries rigid, Mcrit � 220.7 for kcrit �
4.55, and (2) upper boundary rigid, lower boundary perme-
able, Mcrit � 70.1 for kcrit � 2.20. As usual, the critical
number is smaller when one of the bounding surfaces is
permeable, and the critical wave number is smaller by a
factor of about two (i.e., the wavelength is longer). Note
also that the wave number of the fastest growth rate is not
very different from kcrit.
[26] The results obtained above forM =M0 = constant are

only a crude approximation appropriate when f0 = constant,
while M is generally depth-dependent as expressed by
equation (60). In this case, the problem is more readily
solved using numerical techniques. Equation (43) is dis-
cretized using second-order finite differences over n points
within the partially molten layer, and equation (45) is
integrated from the base of the partially molten layer using
a second-order Runge-Kutta scheme. A solution to the
resultant discrete equations is attained using relaxation in
combination with a Newton-Raphson iteration for the de-
sired eigenvalue [Press et al., 1986]. The solutions obtained
for M = M0 = constant are used to evaluate the accuracy of

Figure 4. Results of the calculations for the normalized
growth rate S as a function of M at a wave number of k =
kcrit when M = M0 is a constant.
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the numerical solutions, and the relative errors in the critical
values are found to be less than 0.2% for a grid density of
n = 64, which is used in the following.
[27] Figure 6 shows the effects of depth-dependent M

upon the value of Mavg determined at marginal stability
(s = 0) as a function of Mr. In both cases, the values are
found to be within a few percent of the values for Mcrit

determined previously when Mr > 100. For a rigid upper
and lower boundary, the value of Mavg increases slightly as
Mr ! 1, while the opposite behavior is observed when the
lower boundary is permeable. This may be attributed to the
fact that larger values ofM at the base of the layer imply that
the propensity for instability is greatest at the base of the
layer. When the lower boundary is rigid the perturbation in
velocity is strongly suppressed at the bottom, while a
permeable lower boundary allows for a nonzero velocity at
z = 0, thus creating two different behaviors in the most
unstable portion of the layer.

2.6. Effects of Buoyancy Asymmetry

[28] In the numerical modeling results of HTS, postexten-
sional instabilities were observed to set in after a brief
period of time following cessation or slowing of extension
for a certain range of parameters. It is therefore interesting to
consider what happens when extension stops (i.e., v0 ! 0),
and the melt produced by passive upwelling is allowed to
drain from the partially molten layer. In this situation,M!1,
and one might expect that S ! Smax. However, when no
melt (or very little melt) initially exists, continued melting
only occurs in upwellings while the downwellings remain
unchanged. Physically, this kind of asymmetry means that
downwelling flow is passively driven by adjacent buoyant
upwellings, and the actual growth rate should be somewhat
smaller than Smax. Here we show that this asymmetry in the
generation of buoyancy also complicates the simple periodic

description of the perturbations, and leads to more localized
upwelling flow.
[29] Consider the situation where only melt buoyancy is

available to drive the instability and no melt is present (i.e.,
f0 = 0). In this case, the perturbation equation governing F
becomes (since u0 = c0 = 0)

sF ¼ F
V þ jV j

2

	 

: ð65Þ

When melting occurs only in upwellings, the right side of
equation (65) effectively undergoes a transformation that is
analogous to the effect of a diode upon an alternating
electrical current (i.e., a half wave rectification). For a
velocity field that varies like sin(kx), this rectification leads
to an expanded Fourier series:

sin kxð Þ ! 1

2
sin kxð Þ þ 1

p
þ 2

p

X
n¼2;4;6;::

1

n2 � 1
cos nkxð Þ: ð66Þ

As a result, the horizontal variation in velocity cannot
consist of a single mode, but is in general an infinite series
of Fourier modes. This presents a problem because the
Fourier components for melt are no longer linearly related
to the velocity components in the equations governing the
perturbation. The leading order term has a coefficient of 1/2,
so that the right side of equation (65) becomes about half as
large as the symmetric case, thus a crude approximation
suggests the growth rate of the instability will be reduced by
a factor of about two, i.e., S � Smax/2.
[30] In order to obtain a better estimate of the effects of

buoyancy asymmetry upon the growth rate and form of the
circulation, we instead assume the vertical variation in V is
known and solve for the appropriate horizontal variation
under the effects of half wave rectification. As an example,
consider a simple unit aspect ratio perturbed circulation with
a dominant wave number k = p and a vertical variation in
velocity which goes like sin(pz). Let Vn be the amplitude of
the velocity component that varies like exp(inkx). By

Figure 6. Results of the calculations for Mavg at marginal
stability as a function of Mr for a wave number of k = kcrit
when M is taken to be depth-dependent. The arrows at right
show the limiting values when M is taken to be constant for
both cases.

Figure 5. Results of the calculations for the value of M at
the onset of instability as a function of wave number k. The
dashed line represents the case where the lower boundary is
rigid, and the solid line represents the case where the lower
boundary is permeable, while the upper boundary is rigid in
both instances.
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equating the various Fourier components in the momentum
balance, one finds

Vn ¼
RmF

sp2
n2

1þ n2ð Þ2
Va
n ; ð67Þ

where Vn
a is the corresponding Fourier component of

(V + jVj)/2. This can be solved numerically using discrete
Fourier transforms as follows: Assume an initial velocity
that goes like sin(px), compute the Fourier components Vn

a

of (V + jVj)/2, then calculate new velocity components using
equation (67). Repeating this process recursively to
convergence then yields the exact solution for all Vn. One
finds that Vn is purely real (i.e., consisting of cosines) for
even values of n, and is purely imaginary (i.e., consisting of
sines) for odd n, and the first few components are V1 �
0.633, V2 � �0.283, V3 � �0.079, V4 � 0.011, V5 �
�0.004, V6 � 0.003, while Vn < 0.001 for n > 6.
[31] The solution for the horizontal velocity variation

obtained in this example is compared to the case where
buoyancy is symmetric in Figure 7. The primary effect of
asymmetry is to cause upwellings to become more local-
ized, and downwellings to become slower and more diffuse.
The converse would be true if buoyancy only developed in
downwellings. The change in the growth rate under the
effects of buoyancy asymmetry may also be computed, and
is found to be about 3/5 the value of Smax in the
corresponding symmetric case, which is a slightly smaller
reduction than the factor of two estimated from the leading
order term in equation (66).

2.7. Effects of Solid Depletion Buoyancy

[32] If undepleted mantle were introduced into a partially
molten layer from below and subsequently carried upward
adiabatically to the top, then by definition we would find
that dz0/dz = F such that the right side of equation (46)
vanishes and Z and V become uncoupled. This would be
true throughout the entire partially molten layer in a mid-
ocean ridge-like setting, where material wells up through

the entire partially molten layer from bottom to top. For the
scenario considered here, the initial temperature profile
contracts under the effects of extension and eventually
intersects the eutectic temperature at two different depths
(at the top and bottom of the partially molten layer).
Because we assume the material which forms the partially
molten layer is initially undepleted, the curvature of the
geotherm causes the cumulative degree of melting in the
middle of the layer to be more extensive than at the top or
bottom, where z0 necessarily vanishes. Note that in the
basic state the lower portion of the partially molten layer is
characterized by dz0/dz = F. The required curvature of the
depletion profile in the upper portion of the layer, on the
other hand, leads to a condition where dz0/dz < F. Thus
the unstable part of the depletion gradient is near the top of
the layer, which is where the right side of equation (46)
obtains a nonzero value that can play a role in the
momentum equation so long as Rd > 0 at the top of the
layer (see Figure 8). However, if solid depletion buoyancy
is only important in the deeper part of the layer and is
negligible (i.e., Rd = 0) in the upper (unstable) part of the
layer, then the potential for solid depletion to drive an
instability is greatly diminished.
[33] To better quantify the role of solid depletion buoy-

ancy in the onset of instability, consider the other limiting
case RdZ > 0 and RmF = 0, so that only solid depletion-
derived buoyancy initially drives the instability. Using
equation (38) for z0 leads to the following eigenvalue
problem:

d2

dz2
� k2

	 
2

V ¼ k2
2RdF

s
zV ; ð68Þ

Figure 7. Effect of buoyancy asymmetry upon the
normalized horizontal variation in vertical velocity for a
simple unit aspect ratio circulation. Upwellings become
more localized, while downwellings become broad and
diffuse.

Figure 8. Schematic illustration of how the basic state
depletion profile z0 produced by extension alone is stable in
the lower part of the layer (because F � dz0/dz = 0) and
potentially unstable in the upper part of the layer (because
F � dz0/dz > 0) if Rd > 0. However, in cases where the
upper portion of the layer is in the spinel (Sp) stability field
(Gt, garnet), the upper portion of the layer has Rd = 0, and in
this case, there is no effective buoyancy derived from
depletion at the onset of instability.
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where the solid compaction advection term u0Z is ignored.
In this case, no marginal states are possible and the
perturbation within the partially molten layer grows
unconditionally. The appearance of a factor of z on the
right-hand side of equation (68) illustrates that the
propensity for depletion driven instability is strongest at
the top of the layer where the unstable depletion gradient is
present.
[34] To obtain a solution for the growth rate in this case, V

can be expanded into a power series of the form

V ¼
XN
n¼0

cnz
n ð69Þ

and truncated at degree N. Substituting this expression into
equation (68) leads to the following recursion relation for
the constants cn:

1þ nð Þ 2þ nð Þ 3þ nð Þ 4þ nð Þcnþ4 � 2k2 1þ nð Þ
� 2þ nð Þcnþ2 þ k4cn � k2lcn�1 ¼ 0; ð70Þ

where l = 2RdF/s. This recursion in combination with the
boundary conditions results in a set of equations, and upon
factoring out the constants cn yields a (N � 1) � (N � 1)
matrix whose determinant must vanish to ensure the
existence of a nontrivial solution. This yields an approx-
imate solution for l as a function of k, which approaches the
exact solution as N is increased sufficiently (N > 30) as a
consequence of the strong order of convergence. The
maximum growth rates in this case are found to be (1) both
boundaries rigid, s � 0.0150RdF for kmax � 4.82, and (2)
upper boundary rigid, lower boundary permeable, s �
0.0221RdF for kmax � 2.80. For comparison, if one adopts
dlnr/dz = 6% and dlnr/df = 15% (as in HTS), then the

growth rate for solid depletion-derived buoyancy alone is
about five times smaller than the maximum growth rate for
partial melt-derived buoyancy alone. Also, the fastest
growing wave number for depletion-derived buoyancy is
slightly higher than in the case where only melt-derived
buoyancy is important.
[35] Finally, we examine the effects of a garnet-spinel

transition occurring inside the layer at a height 0 � zsp � 1,
such that Rd = 0 in the shallower spinel stability field for
z � zsp and Rd > 0 in the deeper garnet stability field for
z < zsp. This represents the extreme case where density
changes accompanying depletion in the spinel stability
field are negligible in comparison to changes in the garnet
stability field [Schutt and Lesher, 2006]. The eigenvalue
problem in this case is given by

d2

dz2
� k2

	 
2

V ¼ k2 1� G z� zsp
� � � 2RdF

s
zV ; ð71Þ

where G is the Heaviside function such that G(z � zsp) = 0
for z < zsp and G(z � zsp) = 1 for z � zsp. This is solved by
the shooting method for a variety of values for 0 � zsp � 1
(the results for zsp = 1 are the same as obtained above by
power series expansion). Figure 9 shows the results for the
growth rate as a function of k, illustrating the fact that the
deeper the buoyancy is distributed in the layer, the slower
the rate of growth of the instability. The near coincidence of
the curves for zsp = 0.9 and 1 as well as the smaller
suppression of growth rates in the lower permeable
boundary cases illustrate the additional influence of rigid
boundary conditions. A change in preferred (i.e., fastest
growing) wave number can also be seen as zsp assumes
smaller values.

3. Discussion

[36] Several general conclusions can be arrived at based
on the foregoing linear analysis: (1) the ‘‘Rayleigh number’’
M must be greater than the critical value Mcrit during
extension in order to manifest instabilities driven by partial
melt buoyancy and (2) solid depletion buoyancy must be
significant at shallower levels of the partially molten layer
in order to exert a significant destabilizing influence in the
onset of instability. It is also apparent that the growth rate
for the instability must be significantly greater than unity
(measured in units of the thermal diffusion time) in order for
instabilities to develop before conductive cooling of the
layer extinguishes the partially molten region, consistent
with the assumptions made regarding the basic state. Below
we discuss the conformity of the linear stability analysis
with the numerical modeling results in HTS, the physical
interpretation of the existence of a critical Rayleigh number
Mcrit, and a reexamination of previous studies of decom-
pression melting instabilities beneath mid-ocean ridges in
light of the results of this study.

3.1. Comparison of the Linear Analysis to Numerical
Results

[37] The ability of the linear results obtained above to
adequately explain the results of the numerical calculations
in HTS can be evaluated quantitatively. The thickness of the
partially molten layer D and the average upwelling velocity

Figure 9. Growth rate of the solid depletion buoyancy-
driven instability (curves) for different values of zsp (labels
on curves).

B04406 HERNLUND ET AL.: MELTING INSTABILITIES, 2

11 of 15

B04406



v0 are straightforwardly measured in the numerical models,
allowing quantities such as Rm and Mr to be rescaled and
thus permitting a straightforward calculation of Mavg. For
the upwelling velocity, which was considered a constant in
the linear analysis, the average value of v � ẑ in the partially
molten layer is used. Following this procedure, one finds
that the distinction between ‘‘synextensional’’ and ‘‘post-
extensional’’ instability is well explained by a critical value
of Mavg (see Figure 10). The highest value of Mavg for a
postextensional result is 48.9, while the lowest value ofMavg

for a synextensional result is 62.8, implying that 48.9 <
Mcrit < 62.8. This is within the range of Mavg � 50–70 at
marginal stability determined in the linear analysis when the
lower boundary is permeable, which is most appropriate for
comparison because there is no rigid lower boundary at the
base of the partially molten layer in the numerical models.
[38] In the numerical results of HTS in cases where

depletion buoyancy was strong everywhere in the model
domain, a finite degree of circulation was always observed
prior to the cessation of extension, and the bimodal behavior
seen in the spinel and mixed phase cases was not apparent.
Although this type of scenario cannot be addressed fully
using linear analysis, the foregoing results suggest a rela-
tively simple explanation for this kind of behavior. Deple-
tion-related buoyancy can lead to an unconditionally
unstable scenario beneath extending lithosphere if some of
the material at the top of the layer is less depleted than
material in the middle of the layer, an effect that is created
by intersection of a curved geotherm with a linear eutectic
as discussed previously. Here we estimated that an instabil-
ity driven solely by depletion buoyancy grows more slowly
(by about a factor of five) than a purely melt-driven
instability. In any case, the enhanced instability caused by
depletion buoyancy in the upper part of the partially molten
layer thus provides a sort of ‘‘jump start’’ for the growth of
the instability, which likely enhances the occurrence of
synextensional instabilities. However, the ability for partial
melt to act in concert with depletion-derived buoyancy and
enhance this flow is still subject to the suppressing effects of
background percolation, which is also evident at finite times
in results of HTS for the dependence of erupted melt
volume upon the Darcy coefficient k0/mm.
[39] Cases found in HTS with only a weak or no

instability can be understood as the consequence of either
(1) a long growth time that is comparable to or smaller than

the effective thermal diffusion time of the partially molten
layer or (2) a rate of circulation due to the instability which
is smaller than the rate of passive upwelling due to exten-
sion. In the first scenario, thermal conduction of heat from
the layer upward into the overlying lithosphere causes it to
cool and freeze before significant unstable motions are able
to develop. In the second case, there is a slightly increased
melt production rate in upwelling portions of the instability
and a compensatory decrease in melt production in downw-
elling portions of the instability such that the net effect upon
total melt production is nil.

3.2. Physical Meaning of the Rayleigh Number M

[40] In Rayleigh-Bénard thermal convection the Rayleigh
number Ra is often interpreted in terms of a ratio between
the timescale of Stokes rise of a thermal plume and its
thermal diffusion timescale. Here we show that an analo-
gous treatment for partial melting in a rising Stokes body
yields similar insights into the physical meaning of the
critical phenomenon found in the full stability analysis.
Additionally, we note that the foregoing analysis was
performed assuming that the Darcy permeability k follows
a power law relationship of the form k = k0f

n with n = 2.
This assumption allowed for explicit expressions that would
be considerably more cumbersome in the general case.
However, the appropriate value of n for melt migration in
Earth’s mantle is poorly constrained. Here we allow for
other values of n in order to evaluate the more general case.
[41] The rate of rise of a buoyant partially molten body

through a fluid is given by a Stokes-like formula of the form

vst ¼
ADrgfstD

2

m
; ð72Þ

where Dr is the density difference between solid and melt,
D is now the characteristic dimension of the body, g is the
acceleration of gravity, m is the effective viscosity of the
surrounding material through which the buoyant body
ascends, and fst is the characteristic or average fraction of
melt inside the body (internal variations are ignored here). A
is a dimensionless constant that depends on the geometry of
the body and the influence of its surroundings (for a sphere
of diameter D in an infinite medium A = 1/18).
[42] The fraction of melt maintained in the rising body fst

is determined by a balance between the rate of melt
production Fvst and the rate of removal by upward melt
percolation,

Fvst ¼
BDrgk
mmD

¼ BDrgk0fn
st

mmD
; ð73Þ

where B is a dimensionless geometric constant of order
unity. Combining these expressions, we obtain

fn�1
st ¼ AFmmD

3

Bk0m
; ð74Þ

and for the Stokes velocity

vst ¼ Drg
A

m

	 
n= n�1ð Þ mmF

k0

	 
1= n�1ð Þ
D 2nþ1ð Þ= n�1ð Þ: ð75Þ

Figure 10. Distribution of Mavg during extension calcu-
lated from the numerical results of HTS for cases where
depletion buoyancy is unimportant in the shallower portion
of the model domains, showing that the transition from
postextensional (open circles) to synextensional (solid
circles) instability is well captured using Mavg as a
diagnostic measure. The nonuniform distribution of points
is a consequence of the nonlinear mapping of model
parameters into Mavg.
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For n = 2 these results are very similar to the scaling
analysis given in HTS.
[43] Now consider a layer of Stokes bodies rising together

side-by-side under some external influence with vertical
velocity v0. Initially, none are rising faster than the rest,
since the density of their surroundings is the same, and the
imposed rate of upwelling is uniformly distributed among
them. The equilibrium between melt production and perco-
lation is given (as before) by

v0 ¼
BDrgk0fn

0

FmmD
: ð76Þ

Suppose that some of the bodies attempt to rise a bit faster
than their neighbors by an amount v 0 and thereby support an
extra fraction of melt f 0 according to

v0 þ v0 ¼ Bk0Drg f0 þ f0ð Þn

FmmD
ð77Þ

and try to profit from an excess buoyant ascent rate

v0 ¼ ADrgf0D2

m
; ð78Þ

due to the enhanced decompression melting rate and
retained melt. In order for the difference in rise rates to be
self-sustaining we require f 0 > 0. To find out whether this is
possible we combine the above expressions, expand (f0 +
f 0)n, cancel balanced terms containing only v0 and f0 by
equation (76), and divide by f 0 to obtain

fn�1
st � nfn�1

0 ¼ fn�1
st � dk

df

	 

f¼f0

¼ f0 n n� 1ð Þ
2

fn�2
0 þ ::

� �
> 0: ð79Þ

The condition f 0 > 0 becomes

M 0 ¼ Drg
v0

	 
n�1
FmmD

2nþ1

mnk0

" #1=n

> M 0
crit ¼

nB1=n

A
; ð80Þ

where M 0 is the characteristic ‘‘Rayleigh number’’ for this
case and Mcrit

0 is the critical value that M 0 must exceed in
order for the instability to proceed. For the case n = 2,M 0 can
be written as

M 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DrgFmmD

5

m2v0k0

s
; ð81Þ

which can be seen to be exactly the same expression as the
one for Mavg derived from the full stability analysis in
equation (62). When n = 3, the appropriate formulation ofM 0

is

M 0 ¼ Drg
v0

	 
2
FmmD

7

m3k0

" #1=3

: ð82Þ

We can obtain a basic order of magnitude estimate for Mcrit
0

by assuming A= 1/18 (for a sphere in an infinite medium) and
B = 1, in which case n = 2 gives Mcrit

0 = 36 and n = 3 yields
Mcrit

0 = 54. For material ascending just beneath high-viscosity
lithosphere, this value for A is an upper bound on the rise rate
efficiency, so we expect that in geophysically relevant cases
Mcrit

0 should be larger, in good agreement with the full linear
stability analysis.
[44] The criteria fst

n�1 > (dk/df)f=f0 for instability
suggests the following simple physical interpretation:
differences in buoyant rise rates in an upwelling layer of
partially melting material can only be maintained if the
fraction of melt supported by buoyant rise is greater than
can be accommodated by an increased rate of percolation
alone (see Figure 11). We also notice that Mcrit can be
interpreted as the ratio of the power law index for Darcy
permeability n and the efficiency of Stokes rise A.

3.3. Preferred Wavelength of Circulation

[45] Intimately associated with the value of Mcrit (or
alternatively Smax) is a preferred lateral length scale (or
wavelength) for circulation defined by kcrit (or kmax). Note
that numerical models have shown that the wavelength of
this kind of circulation can be dependent upon variable
viscosity [Choblet and Parmentier, 2001], which is not
considered in the present linear analysis. An additional
complication is that the effective perturbation for any
sublithospheric instability can be strongly influenced by
preexisting heterogeneity. Abrupt changes in deep-rooted
lithospheric structure (e.g., at the edge of a craton) may be a
more relevant determinant in controlling the location of
buoyant melting instabilities in some settings [Raddick et
al., 2002]. In the context of a ‘‘snap shot’’ basic state it is
also important to note that a system passing from M < Mcrit

to M > Mcrit will initially tend to develop instabilities with a

Figure 11. Illustration of the meaning of the critical
number Mcrit. The basic state consists of a balance between
melt production and melt percolation (solid circle) from
which point the perturbation takes place. In order for the
instability to proceed, the buoyant circulation must support
a larger melt fraction in upwellings than in downwellings,
which can only occur if the melt fraction grows at a rate
which is faster than percolation. Three kinds of perturba-
tions are shown to illustrate the relationship between
percolation and buoyant melt production according to
whether M is less than, equal to, or greater than Mcrit.
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dimensional wavelength 2pDi/kcrit, where Di is the thick-
ness of the layer at the onset of instability. However,
because the thickness of the layer can still increase follow-
ing the onset of instability, the persistence of this initial
unstable length scale at later times would lead to an
apparently smaller wavelength relative to the thickness Df

of the layer at later times. This kind of apparent blue-
shifting effect (by an amount Df/Di) will be most significant
for synextensional instabilities, as postextensional behavior
is characterized by Di = Df. The possibility for this kind of
history dependence means that caution must be used when
attempting to apply preferred horizontal length scales to
observations.

3.4. Mid-ocean Ridges

[46] An interesting application of the theory outlined in
this paper is the potential occurrence of buoyant melting
instabilities in partially molten mantle beneath mid-ocean
ridges. Unstable convective flow beneath ridges will inev-
itably affect melt production rates along the ridge, which in
turn may exert a strong control upon the modes of defor-
mation observed near ridge axes [e.g., Buck et al., 2005]. It
has been suggested that unstable flows beneath mid-ocean
ridges, either as Rayleigh-Taylor instabilities resulting from
accumulation of low-density melt [e.g., Whitehead et al.,
1984; Crane, 1985] or as small-scale thermal convection
[e.g., Rabinowicz and Briais, 2002], might control the
length scales of ridge segmentation. Buoyant instabilities
beneath slow spreading mid-ocean ridges such as in the
Mid-Atlantic are also suggested by the observation of
pronounced gravity lows in the centers of some ridge
segments [e.g., Lin et al., 1990]. While it is not entirely
clear whether the enhanced three-dimensional structure
associated with slow spreading ridges (relative to fast
spreading ridges) is a cause or consequence of buoyant
instabilities in the underlying mantle, a necessary condition
is the ability for instabilities to develop in an otherwise two-
dimensional setting [Parmentier and Morgan, 1990].
[47] In three-dimensional models including the effects of

solid depletion buoyancy, Parmentier and Morgan [1990]
introduced a periodic temperature perturbation from below
the ridge axis and found a transition between two-dimen-
sional and three-dimensional structure as spreading rate is
decreased. This unstable flow is characterized by a flow
vorticity parallel to the direction of plate spreading and a
corresponding change in melt productivity along the ridge
axis. The scenario they studied is somewhat different than
the buoyant melting instability considered in this study
because lateral variations in depletion in their model were
induced by shifting the depth of onset of melting downward
in locations of higher temperature. According to the analysis
performed in the present study, such an effect is probably
necessary for depletion buoyancy to become important
because purely internal stability of a plane layer (in the
absence of melt retention buoyancy) requires a preexisting
depletion gradient that is less than adiabatic (i.e., dz0/dz <
F), while ridges are best characterized by adiabatic decom-
pression melting (i.e., dz0/dz = F).
[48] Three-dimensional modeling studies of the mid-

ocean ridge scenario by Jha et al. [1994] and Barnouin-
Jha et al. [1997] including the effects of partial melt
buoyancy and melt migration by Darcy percolation found

similar behavior. For lower values of viscosity, rates of melt
percolation and spreading rates, buoyant melting instabil-
ities were found to occur inside the partially molten region
beneath the ridge (termed ‘‘on-axis’’ instabilities), while for
other ranges of parameters unstable flow only occurred
away from the ridge axis (termed ‘‘off-axis’’ instabilities)
or not at all. Thus these results revealed three types of
scenarios: on-axis, off-axis, and no instability. Although
there exist potentially important differences between the
basic setting for development of melt buoyancy-driven
instabilities beneath mid-ocean ridges and diffusely extend-
ing lithosphere, the behavior observed for mid-ocean ridges
is quite analogous to the behavior found in HTS if we
identify ‘‘synextensional’’ with ‘‘on-axis’’ instabilities, and
‘‘postextensional’’ with ‘‘off-axis’’ instabilities. This is
because the mantle beneath a ridge axis is undergoing
passive upwelling and background melting (similar to
synextensional conditions), while material transported lat-
erally away from the ridge axis in the plate spreading
direction is no longer actively upwelling and as a conse-
quence the melt drains out of the layer as it begins to cool to
subsolidus temperatures (similar to postextensional condi-
tions).
[49] Figure 12 shows the results for the occurrence of on-

axis instabilities as a function of mantle viscosity and
spreading rate for two different values of the Darcy coeffi-
cient k0/mm from the study of Jha et al. [1994], with a line
drawn in each case for Mavg = constant from the results of
this study. The fit is good in predicting the basic dependence
of on-axis instability upon the parameters, though not
perfect (one case in each set is not well fit). The estimated
value of Mavg obtained using the half spreading rate for v0
and other values cited in the study is about 10–20,
suggesting that the critical value of M for a mid-ocean ridge
scenario may be several times smaller than that for insta-
bility in a plane layer.

4. Conclusion

[50] The results of the present linear analysis demonstrate
that the critical behavior for the onset of instability driven
by melt retention buoyancy observed in previous studies is
due to a competition between melt percolation and the rate
of growth of buoyant circulation driven primarily by melt
retention buoyancy. A newly found ‘‘Rayleigh number for
this process was derived that accurately predicts whether
instabilities occur in numerical models of this process in a
plane layer of passively upwelling mantle. The results are in
good agreement with studies of this process beneath mid-
ocean ridges, suggesting that this same kind of critical
behavior in the onset of buoyant decompression melting
instabilities is important in a wide variety of rift settings,
regardless of whether extension is narrowly or diffusely
distributed. The role of solid melt depletion variations in
destabilizing a partially melting layer is sensitive to the
depth distribution of density changes and the preexisting
gradient in depletion.
[51] As a final note, it is important to keep in mind when

applying this theory that the parameters appearing in the
Rayleigh number M are not all generally independent of one
another. This is particularly true of k0 and n, where an
increased value of one must be accompanied by an increase
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in the other in order to maintain similar Darcy velocities for
a given melt fraction. Furthermore, rapid extension in some
settings can be associated with high deviatoric stress,
leading to nonlinear behavior in the rheology of the under-
lying mantle. In such a case, the effective viscosity of a
partially molten layer could become a strongly decreasing
function of v0. This opens the possibility that the role of m0

in the Rayleigh number M can become inverted for high
values of v0 if the nonlinearity in rheology is sufficiently
strong.
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Figure 12. Results taken from the study of Jha et al.
[1994] showing the regime boundary between 2-D (open
circles) and 3-D structure (solid circles) in models of a mid-
ocean ridge that included melt retention and depletion
buoyancy. Here, ‘‘3D’’ means cases where instabilities were
seen to develop at the ridge, while ‘‘2D’’ means that no
instabilities were observed beneath the ridge. In each
diagram, a phase boundary is plotted (dashed line) for each
case at a constant value of M � 20. In each plot, a result that
is not fit by the present theory is indicated by an arrow.
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