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The seismic properties of thin (5–40 km thickness) patches exhibiting low seismic velocities—termed
ultralow-velocity zones or ULVZ—just above the core–mantle boundary (CMB) might be explained by the
presence of partially molten rock, where a liquid phase occupies interstices within a skeletal network of solid
grains. However, a key problem with this explanation is that in the absence of improbably strong surface
tension effects, partial melt is expected to drain by percolation over geological time scales, to form a dense,
melt-rich layer at the CMB with physical properties that are inconsistent with seismic and other geophysical
constraints. Here we consider whether stirring within ULVZ, driven by viscous coupling to convective
motions in the overlying mantle, can inhibit the production of such stratification and maintain a partially
molten region with a structure and constitution comparable to what is inferred seismically. We use two-
dimensional numerical simulations of the response of a melt–solid mixture to stirring imposed from above
and scaling analysis to identify conditions leading to melt separation, retention and drainage over a broad
range of parameters. We find that melt migration at plausible ULVZ conditions is governed predominantly by
dynamic pressure gradients arising from the viscous deformation related to mantle stirring, rather than by
the buoyancy effects driving melt percolation. In particular, dense melt that would otherwise drain
downward and accumulate at the CMB is expected to remain in suspension as a result of the stirring driven
within ULVZ. In addition, our model predicts that partially molten ULVZ patches will be characterized by a
positive gradient in seismic shear velocity (i.e., increasing with depth), consistent with seismic inferences,
and may persist in this state over geological time scales.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ultralow-velocity zone (ULVZ) material occurs as thin (5–40 km
thick) laterally discontinuous patches just above the core–mantle
boundary (e.g., Thorne and Garnero, 2004). ULVZ are usually
characterized as bodies exhibiting P wave velocity (VP) reductions of
≈10% and Swave velocity (VS) reductions of up to≈30% (see Lay et al.,
2004, for a review). This 3:1 decrement in S vs. P velocity is potentially
diagnostic of a so-called “mush” in which liquid occupies the
interstices of a touching solid framework. Viewed this way, the
magnitude of the S-velocity anomaly can imply melt fractions in the
range ≈5–30%, depending on the geometry of the melt-filled pore
space (Williams and Garnero, 1996; Berryman, 2000; Hier-Majumder,
2008). In addition, such a decrement imposes important constraints
on the structure of these regions. It is, for example, well-known that
the connectivity of the solid matrix, which can support elastic stresses
in a mush, begins to break down at the percolation threshold,
corresponding to melt fractions in the range ≈20–60% (depending
on the geometry of the micro-structure). At higher melt concentra-
tions the solidmatrix becomes disaggregated into a “slurry” composed

of melt and suspended (i.e., unconnected) solid grains that can no
longer support elastic stresses (i.e., VS=0). Partially molten ULVZ
patches exhibiting only a 3:1 decrement can, thus, only be reliably
interpreted as mush. That such mushy regions have not drained (or
solidified) over geological time scales presents a remarkable challenge
to understanding the current presence and longevity of these regions.

The stabilization of a ULVZ mush against buoyancy-driven melt
separation and the resulting production of internal stratification is
problematic because the time scale for solid compaction and melt
drainage is generally very short in comparison to the age of the Earth
(Hernlund and Tackley, 2007). Such issues might be resolved by
invoking strong surface tension forces in the micro-mechanical
interactions between liquid and solid grains (e.g., Hier-Majumder
et al., 2006) or particularly low matrix permeabilities related to very
small grain sizes (cf. Eq. (7) and Hernlund and Tackley, 2007). It is,
however, difficult to argue that these very special conditions should
apply over the full history of the ULVZ regions. Accordingly, in this
paper we take a less restrictive approach to the problem and
investigate whether the persistence of partial melt over the full
depth of ULVZ patches is a natural consequence of drainage that is
inhibited by internal stirring driven as a result of viscous coupling to
flow in the overlying mantle.

In more detail, to address this problem we use a two-phase
dynamics model to investigate the effect of an imposed shear at the
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top of a partially molten patch of ULVZ with the geometry shown in
Fig. 1. In addition to being consistent with inferences drawn from
seismic observations of ULVZ beneath the central Pacific and Africa
(e.g., Thorne and Garnero, 2004; others), our picture is supported by
laboratory experiments and numerical simulations that show that
external convective stresses organize ULVZ-scale dense structures
into thicker patches beneath upwelling currents (e.g., Jellinek and
Manga, 2002, 2004; Hernlund and Tackley, 2007; McNamara et al.,
2008). As a result of the continuity of viscous stresses at the mush–
mantle interface such mantle motions will drive vigorous stirring in
the relatively low viscosity ULVZ patches (Jellinek and Manga, 2002;
Hernlund and Tackley, 2007; McNamara et al., 2008) with a structure
that is expected to be comparable to a classical cavity-flow scenario
(e.g., Shen and Floryan, 1985). The goal of our work is to build
understanding of the effect of this imposed flow on the dynamics of
melt retention or drainage in ULVZ mush.

Our most important finding is that under ULVZ-like conditions,
buoyancy stresses driving melt percolation are small in comparison to
the dynamic pressures induced by the imposed circulation. Thus the
distribution of melt inside ULVZ is governed by the migration of melt
from regions of high dynamic pressure into regions of low dynamic
pressure. This effect causes melt to be driven upward and retained in
the matrix even when it is denser than the solid matrix. Our results
also lead to a prediction of a ULVZ shear modulus that increases with
depth, a feature which would explain the heretofore puzzling
inference of an increasing shear velocity with depth inside ULVZ
based upon waveform modeling studies (Rost et al., 2006).

2. Model description

We have formulated a numerical two-phase lid-driven cavity-flow
model in order to investigate the stability of a mushy ULVZ state when
it is stirred by overlyingmantle flows (Fig. 2). For simplicity wemodel
a mush in thermodynamic equilibrium at isothermal conditions and
for vanishing Reynolds number (i.e., a creeping flow). ULVZ are likely
to be approximately isothermal (e.g., Sleep, 1988), being of small
thickness (and hence small thermal diffusion time) and overlying an
essentially isothermal and inviscid liquid metal outer core (e.g.,
Braginsky and Roberts, 1995). The model is two-dimensional and unit
aspect ratio, and has a length scale denoted as H. All boundaries are
taken to be impermeable to both melt and solid flow, while all
boundaries except the top support no shear stresses. The lateral
velocity of the top is imposed as an external kinematic condition with
a maximum value of v0 and a form that is discussed below. The model
equations we use to describe the mechanical evolution of the mush
are similar to the mathematical model of two-phase viscous flow
developed by Bercovici et al. (2001) and Bercovici and Ricard (2003),

though with a slight modification (see Appendix A for details) that
facilitates numerical solutions with non-homogeneous boundary
conditions. In summary, the model includes an equation governing
the conservation of the mass of melt,

∂ϕ
∂t +

→r⋅ 1−ϕð Þ→u + →vϕ
h i

= 0; ð1Þ

conservation of total mass, assuming incompressibility of themixture,

→r⋅→v = 0; ð2Þ

the force balance in the liquid–solid mixture,

→r⋅ η
P
εvÞ−

→r P̃ + ρgẑ = 0;
�

ð3Þ

and a volume-weighted difference between liquid and solid momen-
ta, or “action–reaction” equation,

ηl
→
u

k ϕð Þ−
→r 4

3
η + K0η s

1−ϕ
ϕ

� �� �
→r⋅→u

� �
= 1−ϕð ÞΔρgẑ− →rP̃ + ρgẑ

� 	
;

ð4Þ

where,

P
εv =

→r→v +
→r→v

� 	T
� �

; ð5Þ

and t is time, ϕ is the volume fraction of liquid, ∇→ is the gradient
vector, v→ is velocity (see below), u→ is the Darcy velocity (volume flux
per area of liquid through the solid matrix), P ̃=P+4/3∇→·u→ (P is the
isotropic pressure), ρ is the density, g is the upward component of
gravitational acceleration, ẑ is the upward directed unit vector, η is the
mixture viscosity, cp is the specific heat at constant pressure, k(ϕ) is
the Darcy permeability, and K0 is a constant arising from a micro-
mechanical model of pore space collapse (Bercovici et al., 2001). A
subscript l or s ascribes to the variable, under the two-phase
continuum approximation, an average characteristic of the liquid or
solid respectively. A quantity preceded by Δ represents the difference
between its solid and liquid values, such that Δρ=ρs−ρl. With the

Fig. 1. Schematic illustration of a thickened ULVZ structure entrained beneath an
upwelling mantle plume. The velocity of upwelling plume material can be relatively
large (of order 1 m/yr or higher; e.g., Jellinek et al., 2003), and the viscosity of the
mixture is expected to be relatively small if it is partially molten, thus the ULVZ is stirred
by the overlying mantle flows.

Fig. 2. Cavity-flow configuration used in our numerical models to study the unmixing of
a mush in the presence of stirring. All sides are impermeable to flow, and all sides are
stress free except the top which has an imposed lateral velocity. The internal mixture
velocity v

→
assumes the form of a cavity flow, while the Darcy velocity is directed

downward owing to a density contrast between the melt and solid which causes
downward melt migration.
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exception of viscosity ηwhich we define below, the lack of a subscript
represents that quantity's volume average value over the mixture,
e.g., v→=ϕv→l+(1−ϕ)v→s is the barycentric velocity of the liquid and
solid mixture.

We vary the shear viscosity of the mush according to the empirical
relation,

η = ηs exp −bϕð Þ; ð6Þ

where b is a constant. While b≈21 for basaltic melt in peridotite, this
value can vary considerably depending on composition and changes
in wetting behavior (e.g., Scott and Kohlstedt, 2006; Hustoft et al.,
2007). The permeability k is assumed to depend on ϕ as,

k = c0ϕ
n 1−ϕð Þm; ð7Þ

where c0, n, and m are also constants. For melt fractions greater than
40%, the mixture is considered to be a disaggregated slurry (e.g., Saar
and Manga, 2002), and we require the viscosity to be small enough so
that a surface defined by any contour at ϕ=40% is essentially shear
stress free. For numerical reasons a realistic viscosity reduction across
the mush–slurry transition (more than 20 orders of magnitude)
cannot be used, however, such a dramatic reduction is not necessary in
practice. Numerical experimentation indicates that a value of 10−3ηs
for slurry is already into a limiting regime in which shear stresses
between the slurry and mush are largely decoupled, and we therefore
use this value for the slurry viscosity. This value is also high enough to
suppress the tendency for vigorous (and, in the present context,
spurious) convective motions to arise in the slurry in the case where
viscosity falls more rapidly, an effect that would otherwise seriously
limit the size of time steps in our numerical treatment.

All boundaries except the top are taken to be impermeable and
shear stress free. The component of Darcy velocity normal to the
boundary vanishes. The average velocity of the mixture at the top
assumes the form:

→vtop = v0 sin
πx
H

� 	
x̂; ð8Þ

where x ̂ is the horizontal unit vector. A sinusoidal form is used to
avoid velocity discontinuities and the appearance of strong singular-
ities in stress at the top corners which might otherwise give rise to
larger than plausible dynamic pressure gradients. This is important
because the dynamics under consideration in this study are intimately
related to the magnitude of the dynamic pressure gradient arising
from cavity-like circulation driven at the top. Another reason for
choosing this particular form is that it allows for simple analytical
solutions to be obtained in the case ϕ=constant which can be
compared to numerical solutions for purposes of validation.

The governing equations can be non-dimensionalized using the
length scale H and advective time scale H/v0, so that the system of
equations read,

∂ϕ
∂t′

+
→r′⋅ R 1−ϕð Þ→u ′ + →v ′ϕ

h i
= 0; ð9Þ

→r′⋅→v ′ = 0; ð10Þ

→r′⋅ η′
P
ε′vÞ−

→r′p′ + R ϕ−ϕ0ð Þẑ = 0;
�

ð11Þ

→u′
δ2ϕn 1−ϕð Þm −→r′ 4

3
η′ +

1−ϕ
ϕ

� �� �
→r′⋅→u ′

� �
= 1−ϕð Þẑ−

→r′⋅ η′
P
ε′v

� 	
R

;

ð12Þ

where t′= tv0/H is the non-dimensional time, η′=η/ηs, v
→′=v→/v0 is

the non-dimensional velocity, ∇→′=H∇→ is the non-dimensional

gradient vector, p′=(ρ0gz+P+4/3∇→·u→)H/ηsv0, and εv̲ ̲′=εv̲ ̲H/v0.
The non-dimensionalized Darcy velocity is re-written as,

→u ′ =
ηs

ΔρgH2
→u =

1
R

→u
v0

: ð13Þ

To reduce the degrees of freedom in parameters, we have chosen
the constant K0, which is expected to be of order unity (Bercovici et al.,
2001), to be K0=1 for all calculations presented here.

Two key non-dimensional parameters appear in the governing
equations:

δ2 =
ηsc0
ηlH

2 ; ð14Þ

and,

R =
ΔρgH2

ηsv0
: ð15Þ

Physically, R is a ratio of two time scales: a time scale for buoyant
diapiric rise of a molten body through a viscous solid matrix ηs/ΔρgH
to the time scale for the imposed stirring H/v0. The quantity δ is an
effective compaction length that depends critically on the background
melt fraction, the melt viscosity and functional form for the
permeability and Darcy velocity (see the discussion in Ricard et al.,
2001, for further details). In general, δ increases with enhanced
permeability and reduced melt viscosity. Thus, for a given melt
buoyancy and ηs, a larger δ will lead to a smaller time scale for melt
percolation and separation from the matrix.

We solve Eqs. (9)–(12) numerically starting from a uniform melt
fraction, ϕ=ϕ0. We apply the second-order MPDATA method
(Smolarkiewicz and Margolin, 1998) to Eq. (9) in order to advance
the solution for ϕ forward in time. Solutions for u→′ are obtained using
an alternating direction implicit treatment of Eq. (12), and were
validated using simple analytical solutions for cases with uniform
melt fraction. Solutions for v→′ are found using an iterative staggered
grid finite volume approach to Eq. (11) similar to the SIMPLERmethod
of Patankar (1980) and analogous to the kind implemented by Tackley
(1996) for solving mantle convection problems with strongly varying
viscosity. The accuracy of solutions obtained using the Stokes flow
solver are also validated against analytical solutions for simple cases
with ϕ=constant.

3. Results

Our nominal parameter choices are as follows: b=(log100)/0.4,
yielding two orders of magnitude viscosity decrease up to the
disaggregation fraction of 40%, ϕ0=10%, n=2, and m=0. R and δ2

are systematically varied over several orders of magnitude in order to
characterize the basic dynamical regimes. In all cases the melt is
considered to be more dense than solid, and in the absence of stirring
the liquid would accumulate at the lower boundary. We have also
experimented with different but reasonable values of b, ϕ0, andm and
find that our main results are insensitive to variations among these
parameters.

The basic range of behavior found in the numerical experiments is
summarized in Fig. 3, where the melt fraction is shown after
integrating forward in time until t′≈25 (i.e., around 10 overturns
or about 10,000 time steps for a grid resolution of 128×128). Results
range from cases exhibiting rapid drainage and unmixing of the melt
from the solid to form a melt-rich slurry at the bottom corners of the
domain overlain by a mostly melt-free solid, cases where melt begins
to separate at the boundaries but is readily re-entrained into the
circulatory flow, and cases with a well-mixed state where melt
fraction variations are essentially negligible.

3J.W. Hernlund, A.M. Jellinek / Earth and Planetary Science Letters 296 (2010) 1–8
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For cases where themagnitude of R exceeds unity (e.g., the R=−10
cases in Fig. 3), melt drains to form high melt fraction boundary layers
that accumulate at the lower corners, particularly the lower left corner
where upwelling flow occurs. Viscous coupling to the solid matrix
causes a small fraction of this ponded dense melt to become entrained
upward, and after entrainment to the top it is subsequently transported
laterally across the domain and then descends back down along the
downwelling edge. Inmost cases, this entrainedmaterialmoves around
the edges of the domain without significantly affecting melt fraction in
the core of the circulation, which grows increasinglymelt depleted over
time.

By contrast, as the magnitude of R approaches unity, the volume of
densemelt carried upward andmaintained near the top of the domain
increases. At R=1 there are approximately equal volumes of melt
ponded at the top and bottom corners. For Rb1 the tendency for melt
to be retained within the matrix, above the bottom boundary, is
enhanced. Moreover, this accumulation of melt at the top of the
domain tends towards a steady state in which the rate of upwardmelt
migration is balanced by the rate of downward melt percolation.

For the entire range of R values, the magnitude of melt fraction
variations after several over turns is modulated by δ2, which governs
the rate of compaction. In our model, δ2 appears to play the relatively
simple role of modulating the rate of percolation and separation of
melt and solid to form melt-enriched regions. In the Rb1 cases that
approach steady state over time, for example, δ2 modulates only the
time scale required to reach steady conditions and does not influence

the basic structure of the resulting mixture. Therefore, R appears to be
the most important factor governing the steady state structure of a
stirred mush.

4. Interpretation

We observe that as R→0, effects arising from stirring become
more important than flow driven by buoyancy effects. Melt separation
occurs in these cases but is related to the tendency of gradients in
stress to drive melt migration rather than gravity acting on a melt of
different density than the solid. This kind of behavior is similar to that
described by Spiegelman and McKenzie (1987), where it was shown
that the scale length over which melt was re-directed toward the
corner of a viscous cavity flow is given by a “piezometric length scale”
L =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηsv0 = 1−ϕ0ð ÞΔρgp

, which is obtained by equating the time
scales for stirring and melt drainage. In terms of the present non-
dimensionalization, this length is L′ = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 1−ϕ0ð Þp

. Thus for Rb1,
wefind that L′N1, implying thatmelt percolation over thedomaindepth
H is inhibited because the length scale for melt migration driven by
matrix shear stresses is in excess of the domain itself. Said differently,
this result indicates that the time scale for percolation is sufficiently long
in comparison to the time scale for imposed stirring that buoyancy-
driven melt drainage becomes an unimportant process.

The piezometric length scale identifies only a basic condition for
melt retention. Dynamically, the modulation of melt migration by
variations in R can be better understood in terms of a competition of

Fig. 3.Melt fraction distributions in the domain after a time integration up to about t′=25 for various values of R and δ2. The kinds of behaviors in this parameter range capture the
essential regimes we have been able to identify in our numerical experiments.

4 J.W. Hernlund, A.M. Jellinek / Earth and Planetary Science Letters 296 (2010) 1–8



Author's personal copy

the driving pressure gradients. Darcy's law (e.g., Eq. (4)) written in
any form invariably contains the following proportionality,

→u∝−→rp−Δρ→g: ð16Þ

Thus, the flow of liquid through pore space is driven down the
dynamic pressure gradient −∇→p, which acts towards the corners of
the domain (Fig. 4), and by pressure gradients related to lateral
differences in hydrostatic pressure (i.e., buoyancy effects)−Δρg→ that
act in the direction of gravity (i.e., downward). The dynamic pressure
gradient therefore drives melt upward, replenishing the top of the
domain in liquid, while gravity tends to make dense liquids sink and
accumulate at the bottom. The ratio of these two pressure gradients is,

Δρg
→rp

≈ΔρgH2

ηsv0
= R; ð17Þ

and therefore upward directed forcing becomes dominant when Rb1
while downward directed forcing is dominant when RN1. It is
interesting to note that we arrive at this result as a simple ratio of
forces on the right-hand side of the Darcy equation alone, indepen-
dently of the details and treatment of viscous compaction.

The existence of a state for Rb1 in which dense melt has
accumulated near the top of the mushy region but then stops
accumulating further implies a dynamic balance. Stirring gives rise to
a kinematic flow that transports accumulated melt laterally across the
top of the domain and then downward on the descending side.
However, instead of descending, the melt enrichment remains at the
top in these cases owing to upwardmigration at a rate that balances the
rate of downward transport in the stirred flow. A possible cause of this
behavior is the viscosity reduction near the top of the domain owing to
accumulation of melt, which partly lubricates the flow driven at the
boundary. Such lubrication can reduce the dynamic pressure gradient
that causes melt to migrate upward until it balances the tendency to be
mixed downward. This would be a stable equilibrium because any
depletion of melt near the top would increase the viscosity and the
dynamic pressure gradient and subsequently the upper regionwouldbe
replenished by enhanced upward melt migration. On the other hand,
any slight enrichment inmeltwould decrease the pressure gradient and
allow excess melt to be transported downward by the kinematic flow.

5. Implications for ULVZ

To apply our results it is important to first consider the physical
properties, structure and constitution of ULVZ in greater detail. As a
whole, ULVZ patches exhibit a density increase relative to surround-

ing mantle, and exist as gravitationally stable layers with a density
intermediate between the deep mantle and core. This basic picture is
supported by analyses of short period (≈1 s) seismic waves. For
example, Rost et al. (2006) used short period waveform modeling of
interaction of the ScP phase with a ULVZ-rich region beneath the
southwest Pacific to show that ULVZ material is about 8% denser than
average mantle. Rost et al. demonstrate that a less dense ULVZ is
implausible because it would require a polarity for ScP precursors that
is opposite to that which is observed in data covering the southwest
Pacific. Numerical models of convection andmelting at the base of the
mantle also demonstrate that such features can only be compatible
with ULVZ if themolten region is dense (Hernlund and Tackley, 2007).

Because of the high pressure at the CMB atomic configurations in the
solid and liquid phases are similar and close to optimal packing. A phase
changewill consequently be characterized byamolar volumedifference
of only around 1% (Williams and Garnero, 1996). Densification of the
melt by relative enrichment in iron or other heavy atomic species in
favor of lighter speciesmay also enhance thedensity difference between
liquid and solid, but this depends on the phase diagram which is not
well-constrained at the present time. Nevertheless, the large density
contrasts implied by Rost et al. (2006) cannot be reasonably explained
by a change in phase alone, and demand that ULVZ have an intrinsically
different bulk composition such as an increase in overall FeO abundance
relative to MgO. Such a compositional difference and the existence of a
mush could very well be correlated: an Fe-enriched composition not
only increases the ULVZ density but simultaneously depresses the
solidus temperature to enable the thermodynamic stability of a liquid
phase. This picture is reasonable and a plausible outcome following
fractional crystallization of an ancient long-lived basal magma ocean
(Labrosse et al., 2007), in which case ULVZ is interpreted to be the
mushy residue of a previously much larger magma body.

From the results of Rost et al., the 1% liquid–solid density
difference expected from the experiments of Williams and Garnero
(1996) and geodynamic constraints onmantle convective velocities in
the deepmantle we can place bounds on the value of R appropriate for
ULVZ. Accordingly, we take the density difference between the ULVZ
and surrounding mantle ΔρULVZ to be in the order of 10% and the
density difference between the solid and liquid phases Δρ to be in the
order of 1%. Assuming that the ULVZ topography is supported by
viscous forces arising from flows in the overlyingmantle, continuity of
viscous stresses at themantle–ULVZ interface yields a constraint upon
the ULVZ circulation velocity v0 (e.g., Jellinek and Manga, 2002),

v0≈
ΔρULVZgH

2

η
; ð18Þ

Fig. 4. Illustration of the opposing directions of melt migration force arising from dynamic pressure gradients due to stirring vs. the downward force of gravity acting on a dense melt.
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which leads, in turn, to

R≈ Δρ
ΔρULVZ

η
ηs

: ð19Þ

Using values stated above, and noting that ηbηs (i.e., a partial
molten mixture has smaller viscosity than the solids in the mixture),
we find that R should be smaller than unity, and perhaps bymore than
one order of magnitude (i.e., Rb0.1). From the results (e.g., Fig. 3) this
estimate implies that ULVZ should be well into the stirring-dominated
regime in which buoyancy (i.e., gravity) plays little or no role in the
dynamics of melt separation. Indeed, the estimates used above to
obtain this value would have to be in error by more than one order of
magnitude to change this conclusion, which in this case seems
unlikely. Note also that this estimate for R depends only on density
and viscosity ratios, neither of which could plausibly be greater than
unity.

ULVZ in such a stirring-dominated regime should be melt-
enriched near the top relative to the bottom. This picture predicts,
in turn, that seismic velocities, which generally decrease with
increasing melt fraction, can exhibit an increase with depth inside
the ULVZ. Such a velocity increase gradient inside ULVZ has been
reported by Rost et al. (2006) by modeling high frequency ScP data.
Indeed, to obtain a reasonable fit to ScP coda it was found necessary to
include a positive gradient in velocity, even though there was no
obvious reason to expect such a feature.Whilemodeling of coda is less
secure than modeling of pre-cursory energy due to possible
contamination from out-of-plane scattering, this correspondence
between our predictions and the seismic modeling is notable.

It is also interesting to consider the present results in the broader
context of the evolution of Earth's deep mantle and core. Cooling of
Earth's deep interior over geologic time is necessary to drive
convection inside the core that has sustained a geodynamo for at
least the past 3.2 billion yr (Tarduno et al., 2007), and implies that any
partially molten ULVZ must be the remnants of a much thicker “basal
magma ocean” (BMO) that would have formed early in Earth's history
(Labrosse et al., 2007). In this scenario, buffering of heat capacity by
the underlying core and slow cooling by solid state convection in the
overlying mantle would have led to a gradual crystallization that led
naturally to a state in which ULVZ are iron-enriched, dense, and
buffered at the liquidus–solidus by fractionation (Labrosse et al.,
2007). A stable BMO requires a slightly higher melt density relative to
mantle solids in equilibrium and a relatively large Gruneisen
parameter in the liquid state, and these effects are expected at deep
mantle conditions based upon extrapolations using equations of state
determined by static experiments at lower pressures (e.g., Ohtani and
Maeda, 2001), ab initio models of silicate liquids (e.g., Stixrude and
Karki, 2005), and shock wave experiments (Akins et al., 2004;
Mosenfelder et al., 2007). Clearly, further resolution of the state of
ULVZ will shed much light on this process and the manner in which
deep mantle melts have evolved with time. Given the important
consequences for geochemistry and Earth's early thermal evolution
(Labrosse et al., 2007), these issues surrounding ULVZ remain at the
frontier of our understanding of deep Earth processes and should
motivate further seismological and theoretical studies.

The present results suggest a length scale that selects for ULVZ as a
mushy object that is modulated by the appropriate physical and
dynamical parameters in the deepmantle. For example, in Earth's past
when conditions were hotter, a thicker region of melt such as a BMO
would not have been stable as amush because themagnitude of Rwas
of order unity or greater. This is because R=δρgH2/ηsv0, and there is a
strong dependence on thickness H such that R would be expected to
have been significantly larger in the past. I.e., while ηs and/or v0 might
have been slightly different, neither can reasonably be expected to
have changed more than order H2 according to the results of basic
thermal evolution models (Labrosse et al., 2007), and therefore the

transition from a slurry-like mostly liquid BMO to a state allowing for
the formation of a mushy ULVZmight have occurred when themolten
region grew smaller than a critical size Hcrit≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηsv0 = δρg

p
(i.e., similar

to the “piezometric” length scale L′ discussed in the previous section).
A slurry–mush transition in time from HNHcrit to HbHcrit would also
have consequences for the chemical evolution of the very bottom of
Earth's mantle, such as accommodating a change from fractional to
batch crystallization which would in turn affect the evolution in
composition of both liquid and solid phases.

While not the focus of the present study, the movement of melt
through other portions of Earth's mantle is also important and it is
interesting to consider where this other category of problems exists in
the context of the present model and parameters. One example where
similar kinds of issues play an essential role is the retention of small
amounts of partial melt in Earth's asthenosphere, which might be
capable of producing large seismic velocity contrasts with the
overlying lithosphere (Rychert and Shearer, 2009; Kawakatsu et al.,
2009). In this case, the asthenosphere is also being deformed by the
motion of lithospheric plates, although its response may not be as
simple as a cavity-like flow. However, in direct analogy with the ULVZ
problem, if melt was not able to be retained as a dynamically stable
mush then partial melt would not remain a viable mechanism for
explaining this particular kind of seismic velocity change. Although
other dynamics such as those relating to buoyant melting are also
important and need to be considered at the scales relevant to the
upper mantle (e.g., Stevenson, 1988; Tackley and Stevenson, 1993;
Raddick et al., 2002; Hernlund et al., 2008a,b), it is still instructive to
examine the rate of percolation modulated by δ2 and competition
between melt buoyancy and stirring measured by R. An estimate of δ2

(using ηs/ηl=1019, H=100 km, and c0=d2/72π with grain size
d=1 cm) yields values of order 100. An estimate of R (using
Δρ=500 kg/m3, g=10 m/s2, H=100 km, ηs=1019 Pa s, and
v0=1 cm/yr) yields values of order 10,000. Therefore, the astheno-
spheric scale problem is one where melt buoyancy is dominant and
percolation of melt out of the asthenosphere is expected to be very
rapid. Thus unlike ULVZ, the effects of stirring can be largely ignored at
asthenospheric scales. The impact of matrix forcing effects on
drainage of melt over different length scales in the upper mantle
was also examined by Ribe (1985), who similarly concluded that at
scales much larger than several km melt buoyancy becomes the
dominant force. The propensity for coherent melt drainage by
percolation at large scales may present a dilemma for the retention
of melt throughout the asthenosphere, unless effects such as hydrous
melting can alter this behavior in a manner that substantially reduces
the magnitude of R.

6. Conclusions

In summary, the dynamics of a partially molten system in the
presence of gravity and stirring are governed by two non-dimensional
parameters, δ2=(ηs/ηl)(c0/H2) which modulates the rate of relative
motion between melt and solid, and R=δρgH2/ηsv0 which measures
the importance of melt buoyancy relative to stirring-induced dynamic
pressure gradients. The results of the two-phase dynamics models
demonstrate that the behavior trend for |R|N1 is always toward a
slurry-dominatedmixture in the lower upwelling corner overlain by a
melt-free solid and a slight degree of mush due only to entrainment of
a small mushy boundary layer upward and around the edges of the
domain. For |R|≤1 forces arising from stirring become dominant, melt
buoyancy is insignificant, and melt migrates upward even when the
melt is denser than the solids. For reasonable force balances
supporting ULVZ topography in the deep mantle, we argue that |R|b
1 and therefore ULVZ are likely to be in the stirring dominant regime.
This predicts that ULVZ may be enriched in melt at the top, and
relatively depleted in liquid at the bottom, in accordance with seismic
inferences.
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The results of this study contradict several conclusions of Hernlund
and Tackley (2007), and allow for a viable mechanism to retain melt
inside ULVZ in a way that is sufficient to explain their anomalously
low shear modulus. The reason the previous study did not arrive at
this possibility is that themigration of melt was considered only in the
simple context of melt percolation driven by gravity alone. In the
present study, it was found that gravity is largely irrelevant and that
matrix stresses (which were not previously included in the force
balances) are dominant in this context. Furthermore, the smaller
viscosity of a partially molten ULVZ subjects these bodies to stirring
motions driven by viscous stresses originating from thermal convec-
tion in the overlying mantle. While such viscosity variations were
considered to be unimportant previously, those models were much
larger in scale (i.e., 500 km thickness) and it is doubtful that any
kinematic effects arising from stirring would have been adequately
resolved.
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Appendix A. Model equations and assumptions

Manymathematical models for treating two-phase dynamics have
been proposed (e.g., McKenzie, 1984; Ribe, 1985; Scott and Stevenson,
1986; Spiegelman, 1993; Schmeling, 2000; Bercovici et al., 2001;
Bercovici and Ricard, 2003). The recent model proposed by Bercovici
and Ricard (2003) has been shown to be formally equivalent to the
governing equations of McKenzie (1984) in limiting circumstances,
which helps to moderate concerns regarding differences in various
formulations. Here we adopt the so-called “geologically relevant
limit” of a solid viscosity which is much larger than the liquid viscosity
(ηsNNηl) and a surface energy which is primarily partitioned into the
solid phase(s). We additionally neglect surface tension. In the
nomenclature of Bercovici and Ricard (2003) this amounts to setting
σ= f⁎=ω=0.We then obtain amomentum equation for themixture
(Bercovici and Ricard, 2003, see Eqs. (31)–(35)),

→r⋅
P
τ−→rP−ρgẑ = 0; ðA1Þ

and a volume-weighted difference between liquid and solid momen-
ta, or “action–reaction” equation,

ηl
→u

k ϕð Þ−
→r K0ηs

1−ϕ
ϕ

� �
→r⋅→u

� �
= 1−ϕð ÞΔρgẑ−→r⋅

P
τ = 1−ϕð ÞΔρgẑ

− →rP + ρgẑ
� 	

; ðA2Þ

where τ is the deviatoric stress of the mixture. Eq. (A1) describes the
average force balance in the melt–solid mixture, while Eq. (A2)
governs the forces that drive separation of melt and solid. Below we
describe modifications to Eqs. (A1) and (A2) that we employ in order
to treat mixture viscosity more realistically, to simplify the boundary
conditions for cavity flow, and to eliminate a coupling between melt
migration and matrix shear stress that allows for a simple sequential
solution procedure.

Bercovici et al. (2001) proposed that the simplest possible choice
for the mixture stress assumes the form,

P
τ = ϕ

P
τl + 1−ϕð Þ

P
τs; ðA3Þ

where,

P
τs = ηs

→r→vs +
→r→vs

� 	T−2
3
→r⋅→vs P

I
� �

; ðA4Þ

and,

P
τl = ηl

→r→vl +
→r→vl

� 	T
−2

3
→r⋅→vl PI

� �
ðA5Þ

and I is the identity tensor. Note that ηs and ηl in this derivation are
taken to be the viscosities relevant to each of the individual phases,
and therefore do not depend on any other properties of the mixture.
Therefore, in the limit ηs≫ηl the mixture stress becomes,

P
τ→ 1−ϕð Þ

P
τs = 1−ϕð Þηs

→r→vs +
→r→vs

� 	T
−2

3
→r⋅→vs P

I
� �

; ðA6Þ

and the effective viscosity of the mixture obtained using solid velocity
as the proxy for strain-rate (i.e., the case applicable to mushes) would
vary like,

η = 1−ϕð Þηs; ðA7Þ

Because ηs is independent of ϕ in this theory, the viscosity of the
mixture is imposed to vary linearly between ηl=0 (for a completely
liquid state) and ηs (for a melt-free solid) as melt fraction is varied.

This simple linear variation in ηwith ϕ presents a problem because
experimental evidence points to a more sensitive and complex
pattern of mixture viscosity variations. In particular, the behavior
observed for ϕ less than the disaggregation fraction (i.e., mush) is
usually fit to the empirical relation,

η = ηs exp −bϕð Þ; ðA8Þ

where b is a constant. This kind of behavior is observed regardless of
whether the liquid is silicate (e.g., Scott and Kohlstedt, 2006) or
metallic (e.g., Hustoft et al., 2007), and these kinds of experiments
indicate that η may decrease by 2–3 orders of magnitude as ϕ
increases from zero up to the disaggregation fraction. Furthermore,
the decrease in mixture viscosity above the disaggregation fraction is
precipitous, almost immediately assuming the value of liquid viscosity
in the slurry state. The differences between the simple linear variation
predicted by the Bercovici and Ricard (2003) model for mixture stress
and empirical observations are therefore significant and should be
reconciled. As a simple fix for our present purposes, we will instead
adopt a mixture viscosity that varies exponentially, as in Eq. (A8), and
for ϕ above the disaggregation fraction we impose the smallest value
of viscosity that can be tolerated by our numerical solver in order to
mimic the essential behavior of slurry. However, note that we treat ηs
and ηl as fixed parameters where they appear in all other terms in the
governing equations.

Another issue introduced by the two-phase cavity-flow problem is
that of imposing velocity at one of the boundaries. We have found that
it is convenient to fix the mixture velocity at the boundary, which is
defined as v→=ϕv→l+(1−ϕ)v→s (i.e., the volume average velocity of the
mixture). Using this velocity, flow is driven at the top in the same
manner independently of the state of material (i.e., mush vs. slurry)
adjacent to the boundary. We thenmake a further approximation that
considerably simplifies the solution procedure, by exploiting the
presumably weak coupling between melt migration and mixture
shear stress. In particular, noting that v→s=v→−u→, we make the
following approximation:

→r⋅
P
τ =

→r⋅ 1−ϕð Þ
P
τs

h i
=

→r⋅ η
P
εv−P

εu
� 	h i

≈→r⋅ η
P
εv

� 	
−→r 4

3
η
→r⋅→u

� �

ðA9Þ
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where,

P
εv =

→r→v +
→r→v

� 	T
; ðA10Þ

and,

P
εu =

→r→u +
→r→u

� 	T
−2

3
→r⋅→u

P
I : ðA11Þ

Note that there is no divergence term for ɛ̲v ̲ because∇→·v =0. The
term proportional to divergence of Darcy velocity in Eq. (A9) is
retained in order to account for divergence of stress that accompanies
compaction of the solid matrix, and the choice of 4/3 as a coefficient is
motivated by the fact that in uni-axial compression along an axis z the
term ∇→·ɛ ̲u̲ becomes 4

3
∂2u= ∂z2, or 4

3
∂= ∂r →r⋅→u

� 	
in radial compres-

sion. The mixture momentum Eq. (A1) is then,

→r⋅ η
P
εvÞ−

→rP̃ + ρgẑ = 0;
�

ðA12Þ

where P̃=P+4/3η∇→·u→. For the action–reaction Eq. (A2) we then
have,

ηl
→u

k ϕð Þ−
→r 4

3
η + K0ηs

1−ϕ
ϕ

� �� �
→r⋅→u

� �
= 1−ϕð ÞΔρgẑ− →rP̃ + ρgẑ

� 	
:

ðA13Þ

An important practical advantage gained by the approximation
(Eq. (A9)) is that one may solve Eq. (A12) for v and P ̃ (using∇→·v =0
as a constraint) independently of Eq. (A13) or any prior knowledge of
u→. After a solution for P̃ is obtained, then Eq. (A13)may be solvedwith
terms involving P ̃ entering as a right-hand side forcing term. Thus any
existing Stokes solver may be used for Eq. (A12), and further code for
solving Eq. (A12) can be added as a purely sequential process to obtain
solutions for u→. Thus our present approximation eliminates a coupling
betweenmatrix shear stress andmelt migration that would otherwise
require simultaneous solutions of themixturemomentumand action–
reaction equations. We believe this one-way dynamic coupling from
the solid to the liquid phase is a reasonable approximation in the
present scenario, and a posteriori comparisons of the importance of
the neglected terms verify that they are always small in comparison to
the contribution of solid shear to mixture stress.
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