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a b s t r a c t

The energy balance in the presence of a perovskite (Pv) to post-perovskite (pPv) transition within Earth’s
D” layer is examined in order to explore the relationship between changes in seismic velocity associated
with this phase change, the extent of the two-phase Pv–pPv coexistence region, and the thermal structure
of the deep mantle. This is motivated in part by the fact that discontinuities attributed to the Pv–pPv
transition are inferred to be seismically sharper than permitted by some recent estimates of the pressure
increment across the two-phase co-existence region. Here it is shown that sharp gradients in phase
abundance may arise even when the two-phase loop is very broad, and therefore the pressure increment
determined from thermodynamic stability alone is a poor proxy for predicting the sharpness of Pv–pPv
related seismic discontinuities. The change in pPv fraction over the steepest gradients in phase can also
be highly variable, which would lead to potentially complex variations in the total strength of seismic
discontinuities. Latent heat plays an important role in the structure of the pPv phase change and its
influence upon the geotherm. For the double-crossing scenario – in which a deeper reverse transformation
from pPv to Pv occurs in a steep thermal boundary layer – latent heat release from the shallower Pv–pPv
transition moderates the effects of latent heat absorption at the deeper reverse transition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is widely recognized that a better determination of the D”
layer geotherm would permit an enhanced understanding of the
driving forces responsible for convection in the outer core that pro-
duces Earth’s magnetic field (Braginsky and Roberts, 1995), provide
constraints upon lateral temperature variations in the deep man-
tle that are intimately related to the extent of deep circulation of
subducted lithosphere (Schubert et al., 2001), and elicit insights
into the nature of any buoyant instabilities in the deep mantle
that may give rise to upwelling thermal plumes which rise upward
and trace out volcanic hotspot tracks at Earth’s surface (Morgan,
1971). Only recently has the discovery of a post-perovskite (pPv)
transition in the dominant lower mantle phase MgSiO3 perovskite
(Pv) (Murakami et al., 2004; Oganov and Ono, 2004; Tsuchiya et
al., 2004a) opened up the possibility of making direct temperature
inferences in the D” layer by comparing observations of seismic
discontinuities attributed to the Pv–pPv phase change with experi-
mental and ab initio constraints on the position of the phase bound-
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ary (Hernlund et al., 2005; Ono and Oganov, 2005; Lay et al., 2006;
van der Hilst et al., 2007). These temperature inferences might
potentially be used to infer quantities such as CMB heat flux that are
central to many of the outstanding questions regarding the evolu-
tion of Earth’s deep interior (see Lay et al., 2008 for a recent review).

A thermal boundary layer (TBL) exists above the base of Earth’s
core-mantle boundary (CMB) because conduction down a thermal
gradient is the only mechanism capable of accommodating sig-
nificant radial heat transport out of the surface of the core into
the mantle. The surface of the core itself is essentially isothermal,
exhibiting lateral temperature variations less than about 10−4 K
(Braginsky and Roberts, 1995). Variations in temperature and heat
flux in the deepest mantle therefore arise exclusively as a con-
sequence of mantle circulation patterns that cool Earth’s deep
interior, and the core itself plays a strictly passive role by behaving
as a sort of heat reservoir with a large thermal inertia. The appear-
ance of pPv-bearing rocks is therefore exclusively controlled by
processes operating in the mantle, and its seismic detection and
interpretation may lead to important insights into the dynamics
of the Earth’s deep interior. Additionally, the Pv–pPv phase change
has a positive Clapeyron slope, and pPv is stabilized at lower tem-
peratures. Thus pPv-bearing rocks will tend to form in greater
abundance within cooler regions of the deep mantle, such as the
locations where cool downwellings (e.g., subducted slabs) sink and
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pond above the CMB. This makes inferences of temperature using
Pv–pPv phase change constraints especially useful because heat
transport in the deep mantle is thought to be dominantly controlled
by downwellings (e.g., Labrosse, 2002).

Another constraint may be gained from the Pv–pPv phase
change because the geotherm may initially pass through the
Pv–pPv phase boundary in shallower portions of the D” layer and
then revert back to Pv-stability at greater depths inside the TBL if
the CMB temperature is greater than the transition temperature at
CMB pressure. This has been called the “double-crossing” hypoth-
esis (Hernlund et al., 2005), which offers predictions regarding the
seismic velocity structure of the D” layer that can be tested against
a variety of seismic data. It was shown more than a decade ago
(e.g., Sidorin et al., 1998) that a phase change exhibiting a large
Clapeyron slope could best explain the appearance of seismic shear
velocity increase discontinuities of up to several percent observed
≈150–300 km above the CMB in some regions (Wysession et al.,
1998). If the Pv–pPv phase change (with an estimated Clapeyron
slope of order 10 MPa/K) is to account for this velocity increase dis-
continuity, then a deeper reversion from pPv to Pv will likely be
accompanied by a velocity decrease discontinuity (Hernlund et al.,
2005). Such a velocity decrease underlying a shallower increase dis-
continuity has now been reported in numerous studies involving
seismic migration beneath Eurasia (Thomas et al., 2004b) and the
Cocos-Caribbean region (Thomas et al., 2004a; van der Hilst et al.,
2007), waveform modeling beneath the Caribbean (Sun et al., 2006),
stacking and inversion of short-period ScS precursors beneath the
mid-Pacific (Avants et al., 2006; Lay et al., 2006), and long-period
waveform inversion beneath the Cocos-Caribbean region (Kawai
et al., 2007a) and Arctic (Kawai et al., 2007b). Furthermore, anti-
correlated patterns of P- and S-wave velocity variations that are
predicted to occur in pPv elasticity models (e.g., Wookey et al.,
2005) have been inferred using seismic data probing D” beneath
the Cocos-Caribbean region (Kito et al., 2007; Hutko et al., 2008).
Therefore, a variety of seismic techniques thus far support the basic
predictions of a Pv–pPv phase change, as well as the occurrence of
a double-crossing.

If the Pv–pPv phase change were sensitive to temperature and
pressure alone, the double-crossing picture could be expanded to a
global scale relatively straightforwardly. For example, because the
CMB is isothermal and isobaric, pPv could only occur in lens-like
structures above the CMB, and only Pv would be stable at the very
base of the mantle (Hernlund et al., 2005). Absence of pPv could
then be achieved in some regions as a consequence of a geotherm
that is too hot to stabilize pPv. However, large scale variations in
bulk composition are almost certainly present in the D” layer, and
some of the complex pictures that arise when this is included along
with a pPv phase transition have been further explored by Tackley
et al. (2007). For example, it has been hypothesized that addition
of ferrous iron could have a significant effect, stabilizing pPv inside
chemically distinct Fe-rich “piles” that rest at the bottom of the
mantle beneath the Pacific and Africa (Lay et al., 2006; Tackley et
al., 2007). Spera et al. (2006) studied the form of the pPv double-
crossing assuming regular solution in the system FeSiO3–MgSiO3
using early experimental measurements by Mao et al. (2004) and
the empirical scaling derived from end-member volume mismatch
proposed by Navrotsky (1994). However, the robustness of the
pressure standard comparisons of some of these early diamond
anvil cell results have since been challenged by Hirose et al. (2006).
Indeed, effects involving the system FeSiO3–MgSiO3 that are com-
pletely opposite to those reported earlier – with iron destabilizing
pPv at lower pressures as opposed to stabilizing it – have since
appeared (Tateno et al., 2007). Also, the possibility of a high-spin
to low-spin (e.g., Badro et al., 2004) or intermediate-spin (e.g.,
McCammon et al., 2008) iron transition in perovskite raises fur-
ther questions about the behavior of Fe at conditions of the deep

mantle, and may itself play an unknown but important role in the
complex behavior observed in the FeSiO3–MgSiO3 binary system.
Additionally, somewhat different perspectives on the partitioning
of iron between Pv–pPv and other phases such as ferro-periclase
have emerged (e.g., Sinmyo and Ohishi, 2008; Auzende et al., 2008),
and this might also have a significant influence on the Pv–pPv phase
change. Seismological inferences in support of any of these kinds of
scenarios are non-unique, and critically depend upon the mineral
physics data and interpretations.

Another emerging issue is that some kinds of compositional
effects on the Pv–pPv phase change have been proposed that might
substantially broaden the two-phase co-existence region between
Pv and pPv, such as the addition of Al2O3 (e.g., Akber-Knutston et
al., 2005; Catalli et al., 2009). This might complicate the interpre-
tation of discontinuities attributed to the Pv–pPv transition, which
exhibit an observed “gradient thickness” of up to around 75 km,
corresponding to about 4 GPa in pressure change (e.g., Wysession
et al., 1998). The “gradient thickness” is the apparent depth inter-
val over which the majority of the seismic velocity change occurs,
and is often assumed to be distributed over the entire two-phase
co-existence loop (e.g., Helffrich and Bina, 1994). This viewpoint
suggests that any findings of two-phase co-existence with a pres-
sure increment larger than 4 GPa could mean that the Pv–pPv
transition cannot not produce discontinuities that are sharp enough
to explain the seismic observations. However, the assumption that
gradients are always distributed uniformly over the entire two-
phase co-existence loop has been shown to be false in the context of
shallower mantle phase transitions, because self-consistently cal-
culated phase abundance profiles can be highly non-linear inside
the two-phase region, particularly when the two-phase loop is
broad (Stixrude, 1997). However, this effect has never been investi-
gated in the context of the Pv–pPv transition, which is significantly
different from the shallower phase changes in that it exhibits a
relatively large Clapeyron slope, occurs inside a thermal boundary
layer, and is potentially influenced by latent heat to a greater extent.

There are also issues related to energy balances for the pPv
double-crossing and its implications for heat flux that have not
been resolved. One issue is latent heat, which can deflect the
geotherm near the phase transition (Verhoogen, 1965). Using a
simple heat balance, Buffett (2007) recently showed that latent
heat absorption causes a steepening of the geotherm beneath a
pPv double-crossing. Essentially, steady production of the higher
entropy Pv phase from a lower entropy pPv phase upon down-
welling through the lower crossing requires a net input of heat at
the phase boundary to balance the absorption of latent heat, which
can only be realized by differences in heat conduction (i.e., changes
in the thermal gradient) above and below the transition. The impli-
cation is a geothermal gradient beneath the pPv lense which is even
steeper than that given by a phase boundary gradient lower bound
alone. The effect would be enhanced when a two-phase region is
present (Buffett, 2007), because the change in conduction needs to
additionally balance the difference in advection at the top and bot-
tom owing to the large temperature gradient. This phenomenon
possibly provides more leverage on the thermal gradient at the
very deepest levels of the mantle, however, it can only be confi-
dently applied if one can rigorously connect kinematic factors such
as downwelling velocity with thermodynamic factors such as latent
heat and transport properties like thermal conductivity, all of which
exhibit a large range of uncertainty.

The relationship between the appearance of pPv-bearing rock
and various kinematic or dynamic factors is also an active area of
research. Lay et al. (2006) presented simple fits of an error function-
like geotherm to observations of discontinuities beneath the central
Pacific in an attempt to bracket how uncertainties in the parame-
ters would trade off with the inferred heat flux beneath what was
interpreted to be a pPv double-crossing. More ambitious attempts
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to relate the deep mantle geotherm to the occurrence of pPv have
involved using mantle convection models running under Earth-like
parameters along with some approximation of a post-perovskite
phase transition (Nakagawa and Tackley, 2004, 2005, 2006;
Monnereau and Yuen, 2007; Tackley et al., 2007; Nakagawa and
Tackley, 2008). These kinds of studies, performed in both 2D and
3D with domains encompassing the entire mantle, demonstrate
that the occurrence of post-perovskite is highly sensitive to param-
eters governing both the post-perovskite phase boundary as well
as those affecting mantle convection. While these kinds of studies
ultimately shed light on the connections between the parame-
ters governing the dynamics of mantle convection as well as the
appearance and large-scale topology of post-perovskite in relation
to convection features, they are necessarily coarsely discretized and
cannot shed light on details such as variations in phase abundance
inside two-phase regions which are important for interpreting seis-
mological data on a finer scale. The large-scale behavior is, however,
important for expansion of temperature and heat flux constraints
from the Pv–pPv discontinuity to the entire D” layer. Such efforts
also depend upon complementary efforts in seismological mapping
of the large-scale occurrence of post-perovskite in the deep mantle,
for which some preliminary models and constraints have begun to
emerge (e.g., Houser, 2007; Sun and Helmberger, 2008).

The purpose of the present manuscript is to extend earlier work
on the Pv–pPv transition to consider the effects of both latent heat
evolution and composition variations on the form of the geotherm
and the fine-scale distribution of pPv beneath cool downwellings
in the deep mantle. Both analytical and numerical techniques are
exploited in order to explore the steady-state one-dimensional
energy balance and fine structure of the Pv–pPv phase change. The
findings are similar to those of Stixrude (1997), and demonstrate
that highly non-linear variations in phase may occur when the
two-phase loop is broad, and this might help explain why seismi-
cally observed gradient thickness of D” discontinuities are smaller
than some inferences of the thickness of the two-phase loop.
Energy balances across the Pv–pPv transition also demonstrate the
importance of latent heat for this phase change, particularly when
considered relative to more familiar phase changes at shallower
depths in the Earth’s mantle.

2. Governing equations

2.1. General form

Conservation of energy can be written as,

∂("cpT)
∂t

+ $∇ ·
�
$v"cpT − k $∇T

�
= −T#s$− "g˛Tvz + Q + , (1)

where " is the density, cp the specific heat, T the temperature, t the
time, $∇ the gradient vector, $v the velocity, k the thermal conductiv-
ity, g the acceleration of gravity, ˛ the thermal expansivity, vz the
upward velocity,#s the entropy change between two phases with
$ measuring the rate of mass conversion from a lower to higher
entropy phase per unit volume, Q is the internal heating rate due
to radioactive decay, and  is the dissipation of energy. Note that
in this and the following conventions, #s is defined so that it is
always positive, and the sign of $ determines whether latent heat
is absorbed or released. The pressure P has been assumed to be
strictly lithostatic, such that $∇P = "$g. The role of internal heating
and dissipation on the phase change will not be considered in detail
in the present study, and we shall accordingly set Q =  = 0 in the
following developments.

Conservation of mass can be described by,

∂("Pv%)
∂t

+ $∇ · ($v"Pv%) = $, (2)

for the higher entropy Pv phase and,

∂["pPv(1 − %)]
∂t

+ $∇ ·
⇥
$v"pPv(1 − %)

⇤
= −$, (3)

for the lower entropy pPv phase, where % is the volume fraction of
Pv phase of density "Pv, and "pPv is the density of the pPv. In this
case, pPv is the lower entropy phase and Pv is the higher entropy
phase. Note that in taking the volume fraction of pPv phase to be
1 − %, the phase change is considered to involve the entire volume
of material. This could be compensated for in a partial volume of
rock by scaling the entropy change by the appropriate fraction of
mantle undergoing the phase change (i.e.,#s→ f#s, where f would
be the fraction of material undergoing a phase change).

Here I will consider only a binary system in the form of a solid
solution that exists in both Pv and pPv. The solute component that
is dissolved in solid solution will be denoted by a mole fraction
XpPv in pPv and XPv in Pv. Conservation of solute species leads to
the well-known “lever rule,” which may be written as:

X − XpPv

XPv − XpPv
= %"Pv

"
, (4)

where X = [XPv"Pv% + XpPv"pPv(1 − %)]/" is the composition of the
mixture, and " = "Pv% + "pPv(1 − %). The factor "Pv/" on the right
side of Eq. (4) accounts for the small difference between volume
and mass fraction, but does not typically differ significantly from
unity in the case of Pv and pPv. X is a constant fixed by the chemistry
of the rocks, whereas XpPv and XPv are variable functions of both T
and height above the CMB, denoted by the coordinate z.

2.2. Simplifications

The scenario we are interested in here is the case of a pPv lens
forming in a downwelling region much wider than it is tall, so that
variations in temperature are only significant in the vertical direc-
tion z rather than a horizontal direction x. Alternatively, one can
assume a vertical axis of symmetry in the middle of a downwelling
region, which then reduces to essentially the same mathematical
formulation. The basic configuration is illustrated in Fig. 1. For sim-
plicity, we ignore the small contribution of sphericity. In this case

Fig. 1. Schematic illustration of a downwelling flow ponding above the CMB under
pure shear deformation giving rise to a region above the CMB where post-perovskite
becomes stable owing to a reduced temperature.
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the conservation of energy Eq. (1) becomes,

"cp

✓
∂T
∂t

+ vz
∂T
∂z

◆
= ∂
∂z

✓
k
∂T
∂z

◆
− T#s$− "g˛Tvz, (5)

while the conservation of mass Eqs. (2) and (3) become,

"Pv

✓
∂%
∂t

+ vz
∂%
∂z

◆
= $, (6)

and,

"pPv


∂(1 − %)
∂t

+ vz
∂(1 − %)
∂z

�
= −$. (7)

For simplicity, a pure shear style of deformation is adopted, and
is described by the velocity field,

$v = vxx̂ + vz ẑ = ε̇(xx̂ − zẑ), (8)

where z here is defined as the height above the CMB, x̂ and ẑ are
the unit vectors directed along the coordinates x and z, vx and vz
are the respective components of velocity, and ε̇ is the strain-rate.
Note that the way Eq. (8) is written, ε̇ is positive for downwelling
flow. Under this assumed kinematic flow, the 1D conservation of
energy Eq. (5) becomes,

"cp

✓
∂T
∂t

− ε̇z ∂T
∂z

◆
= ∂
∂z

✓
k
∂T
∂z

◆
− T#s$+ "g˛T ε̇z, (9)

while conservation of mass is,

"Pv

✓
∂%
∂t

− ε̇z ∂%
∂z

◆
= $, (10)

and,

"pPv


∂(1 − %)
∂t

− ε̇z ∂(1 − %)
∂z

�
= −$. (11)

While this form for the downwelling flow is admittedly simple
in form, and a large variety of other circumstances might apply to a
pPv lens (e.g., that arising from variable viscosity due to both phase
and temperature variations), this formulation allows us to study
the most basic behavior of the system while utilizing the fewest
parameters.

3. Time dependence and steady state

In most of the models described in this manuscript, a steady-
state assumption is adopted in order to simplify the analysis.
However, mantle convection is time-dependent, and some con-
sideration of this time-dependence as it applies to the boundary
layer is useful in order to assess the magnitude of any error aris-
ing from a steady-state assumption. It is useful to begin by finding
particular one-dimensional half-space solutions for temperature
in the absence of phase changes and adiabatic heating by setting
$ = ˛ = 0. Here I also take k to be constant. The governing equation
for temperature is then,

∂T
∂t

− ε̇z ∂T
∂z

= '∂
2T
∂z2 , (12)

where ' = k/"cp is the thermal diffusivity. Most simple descrip-
tions of the thermal boundary layer invoke an error function-like
form for the geotherm. This is convenient for a basic analysis of
the time dependence of the boundary layer, because a temperature
profile assuming the form of an error function is in fact a solution to
Eq. (12). With this motivation, it is useful to seek time-dependent
solutions to Eq. (12) of the form,

Tcmb − T
Tcmb − T∞

= erf
⇣
z
z0

⌘
, (13)

where Tcmb is the CMB T, T∞ is the limiting (potential) temperature
far above the CMB, and z0 is a characteristic length scale of the
thermal boundary layer and is itself a function of t (i.e., z0 = z0(t)).
Notice that the temperature drop across the boundary layer, Tcmb −
T∞, is constant in this example, so that this kind of functional form
only captures variations in the thickness of the boundary layer as
it responds to changes in strain-rate. Perturbations in temperature
will be considered next. Substituting Eq. (13) into Eq. (12) yields an
ordinary differential equation in time for z2

0,

dz2
0
dt

+ 2ε̇z2
0 = 4', (14)

with the solution,

z2
0 =

z2
0(t0) + 4'

R t
to
u(t′)dt′

u(t)
, (15)

where,

u(t) = exp

✓
2

Z t

to

ε̇(t′)dt′
◆
, (16)

and t0 is an initial time.
Several interesting features arise from this simple solution for

the time dependence of the boundary layer thickness. First, accord-
ing to Eq. (15), given a constant value of ε̇ the boundary layer
thickness z0 approaches the steady-state value,

z0(t → ∞) =

r
2'
ε̇
. (17)

The length scale z0(t → ∞) is of fundamental importance in the
present problem. The physical interpretation of z0(t → ∞) is the
length scale over which a balance between advection of cool mate-
rial downward from above and conduction of heat upward from
below is maintained. This also gives the appropriate value for the
boundary layer thickness whenever a steady-state assumption is
adopted. One could also write the above relationship (recalling
|vz | = zε̇) as,

Pez0 = |vz |z0(t → ∞)
'

= 2, (18)

where Pez0 is the Peclet number with the steady-state value of z0
chosen as the dimensional length scale. This demonstrates the fact
that a TBL subject to downwelling from above will strive to achieve
an equilibrium thickness z0 such that the Peclet number is exactly
2. Notice that this offers a constraint on the values that may be
assumed by vz , z0(t → ∞), and ' at steady-state, such that choosing
any two values determines the magnitude of the other. This is a
reduction of the degrees of freedom for the boundary layer problem
that is strictly valid only when a steady-state exists.

The foregoing analysis may also be extended to the time-
dependence of the geotherm and its relation to the steady state.
Consider the case where the temperature is initially that of an error
function profile characterized by z0(ti) /= z0(t → ∞) at some ini-
tial time ti. From the solution (15) the boundary layer thickness
approaches the steady value z0(t → ∞) according to,

z2
0(t) = z2

0(ti) exp [−2ε̇(t − ti)] + z2
0(t → ∞). (19)

This result shows that z2
0 decays to its steady value z2

0(t → ∞)
over an e-fold time scale of 1/2ε̇. The remarkable feature of this
time scale is that it depends in no way on the thermal diffusivity.
In cases that do not involve any kind of strain, characteristic time
scales of order D2/' are more applicable (where D is the relevant
length scale). For comparison, a strain-rate of ε̇=10−15 s−1 typical of
mantle deformation yields an equilibration time scale of order tens
of millions of years. On the other hand, for this kind of boundary
layer process operating over a typical boundary layer length scale of
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100 km the thermal diffusion time scale would be of order several
hundred million years, i.e., an order of magnitude longer than the
strain-rate controlled time scale. The time scale 1/2ε̇ determined
in this special case is solely representative of the time it takes for
a temperature field already in a self-similar error function form
to be transformed into another error function form that balances
advection and diffusion.

The time scale for the decay of more general kinds of tem-
perature fluctuations of length scale ( can also be evaluated by
adding an oscillatory perturbation to temperature of the form
)(t) sin[2*z/((t)], where the amplitude)(t) and wavelength ((t)
of the perturbation are both functions of time, and the perturbation
is expected to eventually disappear under the action of diffusion.
Substituting this into the governing Eq. (12) gives,
✓

4*2')
(2 +)′

◆
sin

⇣2*z
(

⌘
−

✓
2*ε̇z)
(

+ 2*z)(′

(2

◆
cos

⇣2*z
(

⌘

= 0, (20)

where a prime is used here to denote the time derivative. Requiring
the terms proportional to the sine and cosine to vanish indepen-
dently yields two coupled equations,

)′ + 4*2

(2 ') = 0, (21)

(′ + ε̇( = 0. (22)

Eq. (22) may be solved to give,

( = (0 exp[−ε̇(t − t0)], (23)

where (0 is the wavelength at an initial time t0. ) can then be
obtained using Eq. (21),

) =)0 exp

✓
−4*2'[exp(2ε̇t) − exp(2ε̇t0)]

ε̇(2
0

◆
, (24)

where)0 is the initial amplitude of the temperature perturbation.
The time scale required to reduce the amplitude of the perturbation
by a factor 1/e is given by,

+ = 1
2ε̇

log


1 + ε̇

'

⇣
(0

2*

⌘2
�
, (25)

which is, once again, of leading order 1/2ε̇ because (ε̇/')((0/2*)2

is of order unity for typical parameters and therefore does not sub-
stantially affect the logarithmic term (this is true even for large
variations of these parameters around typical values). The reason
for the dominance of shear on time scales in the present scenario
is that in a pure shear-style shortening the wavelength of a tem-
perature variation decreases exponentially in time according to
Eq. (23), and while the amplitude decays slowly when the wave-
length is large, it begins to decay very rapidly once ( has decreased
sufficiently enough to make diffusion highly efficient. Therefore it
is reasonable to suggest that in all cases for the present problem
the relevant time scale for the geotherm to reach a steady-state is
always 1/2ε̇. This time scale is the same as the time required for
downwelling material to transit the boundary layer and become
incorporated into the very bottom of the mantle, such that soon
after a slab arrives and ponds above the CMB nearly steady-state
geothermal conditions will be realized.

4. Steady energy balance for the post-perovskite
double-crossing

Here we turn to the influence of latent heat across both a Pv→
pPv phase change as well as the pPv→ Pv transition that occurs at
greater depths in the thermal boundary layer in the double-crossing

scenario. This problem is similar to the one addressed by Buffett
(2007) for the lower crossing, but is arrived at in a slightly different
manner and here we will include a finite transition width in the
analysis. For simplicity, in this section I assume that the contribu-
tion of adiabatic heating inside the two-phase region is negligible
in comparison to latent heat (i.e., ˛ = 0). At steady-state conditions
Eqs. (1)–(3) give,

∂
∂z

✓
"vzcpT − k∂T

∂z

◆
= −T(#s$), (26)

∂
∂z

("vz%) = $, (27)

∂
∂z

["vz(1 − %)] = −$. (28)

There exist two cases for the double-crossing: one in which the
higher entropy Pv phase appears above the region hosting the lower
entropy pPv phase (upper crossing) and one in which the higher
entropy Pv phase appears below the region hosting the lower
entropy pPv phase (lower crossing). Apart from differences in the
magnitude of the Clapeyron slope, the upper crossing is similar to
other well-studied exothermic phase changes, such as olivine→ ˇ-
spinel (e.g., Schubert et al., 2001). On the other hand, the lower
crossing case does not have simple analogies in other settings and
therefore has not been studied in detail, with the exception of the
study of Buffett (2007).

Let the two-phase region (for either the upper or the lower
crossing) be confined to some coordinate range z− ≤ z ≤ z+, and
for convenience of notation let a super-script “−” or “+” raised over
a variable denote the value of that variable at z = z− or z = z+,
respectively. For example, %(z = z−) = %− and %(z = z+) = %+ are
the values of % (the fraction of Pv phase) at the bottom and top of
the two-phase region, respectively. For the upper crossing, notice
that %− = 0 and %+ = 1 (i.e., Pv is absent at the bottom of the two-
phase region). On the other hand, for the lower crossing, %− = 1
and %+ = 0 (i.e., Pv is absent at the top of the two-phase region).
Using this shorthand notation, integrating Eqs. (26) and (27) from
z− to z+ gives,
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and,
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From integration by parts,
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∂z
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If changes in "vz across the two-phase region are negligibly
small, then we can write,

Z z+

z−
T#s$dz = ∓T#s"|vz |, (32)
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where vz < 0 is assumed and,

±T#s = [T#s%]z
+
z− −

Z z+

z−

∂(T#s)
∂z

%dz, (33)

is the effective latent heat of the transition. The ∓ and ± signs
appearing in these expressions are applied as follows: the upper
sign is for the upper crossing case and the lower sign is for the lower
crossing case (this sign convention will continue to be used below).
Note that the integral term in Eq. (33) is usually neglected in most
analyses because its relative importance is of order (T+ − T−)/T .
The energy balance obtained by integrating over the two-phase
region may then be written as,

−"|vz |
�
c+p T

+ − c−p T−
�

− k+

∂T
∂z

�+

+ k−

∂T
∂z

�−

= ±T#s"|vz |.

(34)

The assumptions leading to Eq. (34) should be re-iterated: adia-
batic heating and internal heating, as well as variations in "vz have
all been neglected over the depth range encompassing the two-
phase region, and the velocity is assumed to be in the downward
direction.

When all phases are well above their Debye temperatures and
non-linear mode coupling due to anharmonicity is negligible, we
can take c+p = c−p = cp. If we also assume that the thermal conduc-
tivity does not differ significantly between the two-phases (i.e.,
k+ = k− = k), then the difference in temperature gradients above
and below the two-phase region can be written:

∂T
∂z

�+

−

∂T
∂z

�−

= |vz |
'

✓
∓T#s
cp

∓#Tinc + "g
,
ı

◆
. (35)

where ' is the thermal diffusivity, #Tinc is the positive tempera-
ture increment across the two-phase loop at constant pressure for
a given bulk composition, g is the gravitational acceleration, , is the
Clapeyron slope, and ı = z+ − z− is the depth interval of the two-
phase region. In writing Eq. (35) I used the relation between the
total temperature change across the two-phase region, T− − T+,
and the pressure dependence of the phase diagram given by the
Clapeyron relation, to find,

T− − T+ = ±#Tinc + "gı
,
. (36)

This relation is illustrated in Fig. 2, which shows how the phase
diagram is shifted down or up in temperature at the upper and
lower extents of the two-phase regions, respectively, for both the

upper and lower crossing scenarios and a given bulk composition.
In writing Eq. (36) I have assumed that the change in pressure
across the two phase region does not significantly change the
form of the phase diagram in temperature-composition space. In
other words, the assumption is that only effect of pressure change
across the two-phase region is to shift the phase diagram up or
down in temperature by a magnitude given solely by the Clapeyron
relation.

Some insights may be obtained for the Pv→ pPv transition by
exploiting limiting circumstances in order to simplify the above
relations. When advection is more important than diffusion (i.e.,
in the limit |vz |/'→ ∞), the left side of Eq. (36) vanishes and it is
straightforward to solve for the two-phase region thickness,

ı = ılat + ıcomp =
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,
"

⌘
, (37)

where (#"/"),/" has been substituted for #s by means of the
Clapeyron relation. The first term, ılat , is the contribution to the
transition depth interval due only to deflection of the geotherm
along the phase boundary by latent heat release. Note that this
baseline depth interval over the two-phase region applies even
in the case of a univariant transition. The second term, ıcomp, is
the contribution to the phase transition depth increment owing to
composition influences upon the phase equilibrium, and accord-
ingly scales with the temperature increment across the two-phase
region,#Tinc (notice that#Tinc, =#Pinc , the corresponding pres-
sure increment across the two-phase loop). The ılat obtained here
by assuming |vz |/'→ ∞ is an upper bound, and this value can be
much smaller when thermal diffusion is important (e.g., Schubert
et al., 2001).

It is interesting to compare how ılat and ıcomp differ for the
case of the Pv–pPv transition relative to more familiar transition
zone phase changes. For a transition zone phase change exhibit-
ing , of order 1 MPa/K, " = 3300 kg/m3, #"/"=1%, g = 10 m/s2,
and cp = 1000 J/kg/K, this calculation gives ılat of order 1 km. For
the same kind of phase transition including a variance in compo-
sition and using a temperature increment across the two-phase
loop of #Tinc = 100 K yields ıcomp of about 3 km. Thus the tran-
sition width is increased by a factor of 4 in this case when #Tinc
is increased from 0 to 100 K. On the other hand, in a Pv→ pPv
phase change with T =2000 K, " = 5000 kg/m3 and , of order
10 MPa/K (keeping other parameters the same as above), we find
that ılat is around 100 km. This is much larger than the transition
zone value of ıcomp, owing mostly to the quadratic dependence
upon , . Adding a #Tinc of 100 K in the Pv→ pPv case gives
ıcomp of around 40 km. Notice that ıcomp/ılat is about one order

Fig. 2. Illustration of the relationship between T+ , T− , #Tinc and "gı/, . The temperature of the binary loop is higher for the height z− at the base of the two-phase region
relative to the height z+ at the top of the two-phase region.
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of magnitude smaller for the Pv→ pPv case relative to the “typ-
ical” transition zone phase change considered above. While one
shouldn’t expect the limit |vz |/'→ ∞ to apply exactly in the upper
crossing scenario, in particular due to its proximity to the TBL
and corresponding influence of at least some changes in ther-
mal gradient, these numbers are still useful as a guide for relative
variations in the nominal widths of the phase transition. In partic-
ular, these numbers demonstrate that latent heat plays a relatively
more important role in the Pv→ pPv phase change than it does in
more familiar transition zone phase changes, and care should be
taken in applying approximations that may be valid for the latter
cases but not in the former case. Additionally, the depth incre-
ment expected across the Pv→ pPv phase change is intrinsically
much larger than shallower phase changes with smaller Clapeyron
slopes.

For the lower crossing scenario, if#Tinc = ı = 0 (as in the case of
an infinitesimally thin, univariant transition), then Eq. (35) reduces
to exactly the same expression obtained previously by Buffett
(2007). It appears that, for a univariant phase change, the contri-
bution of latent heat to the transition width, ılat , can indeed be nil.
Also, in the lower-crossing case the terms proportional to |vz |/'
are all positive, and a change in thermal gradient across the tran-
sition is inevitable according to Eq. (35). The physical significance
of this expression for the lower crossing is that the absorption of
latent heat in converting the lower entropy pPv phase to the higher
entropy Pv phase is balanced by differences in heat conduction
into the two phase region on either side of the phase boundary.
For the lower crossing, the magnitude of the thermal gradient is
greater below the transition than above the transition. Note, how-
ever, that the difference in temperature gradients is larger for the
lower crossing when a two-phase region is present and #Tinc /= 0
(Buffett, 2007). In this case, the increased net conduction of heat
into the two-phase region must also accomodate the fact that
material leaving the region is hotter than when it entered by an
amount T− − T+, which yields a net divergence in advected heat
flux that must also be balanced by an even larger change in ther-
mal gradients above and below the two-phase region. Eq. (35) may
be used to estimate the relative importance of these effects. We
will return to this subject in the next section, where inclusion of
both the upper and lower crossings is found to moderate the over-
all influence of this geothermal steepening effect. However, this
kind of steepening will still imply a lower bound for the geother-
mal gradient beneath a pPv double-crossing that is larger than
the gradient of the phase boundary by an amount equal to the
right-side of Eq. (35). If the thermal conductivity is known, then
this can provide potentially very useful constraints upon the CMB
heat flux where ever a pPv double-crossing occurs in the deep
mantle.

5. Numerical solutions

Next we turn to steady-state numerical solutions of Eq. (9). As
with all previous sections internal heating is neglected, however,
in the present solutions adiabatic heating is included for purposes
of illustration. It will be seen that the effect of adiabatic heating is
to introduce a gradual gradient in temperature that is only signifi-
cant over many hundreds of km, and it does not affect the structure
of the phase change itself. Numerical solutions are obtained with
relative ease using the finite-difference method, which for a stan-
dard second-order discretization produces a tri-diagonal system
of equations that is solved with negligible computational expense.
This numerical method is useful for exploring the complexities of
both the temperature and pPv abundance inside the boundary layer
under various conditions, where many of the kinds of assumptions
that allow for straightforward analytical solutions do not always
yield sufficiently accurate results.

5.1. Model definitions and parameters

It is important to recognize that the problem of solving for phase
abundance and/or temperature is inherently non-linear due to the
coupling between phase production, the phase diagram, and latent
heat. If phase production is changed, it will cause a deflection in
the geotherm owing to the corresponding change in latent heat
production. Yet the deflection in the geotherm itself will cause a
shift in the equilibrium which, in turn, affects the abundance of
phases. In the present nomenclature, $ may be obtained directly
using the mass conservation Eq. (2) if variations in % are known.
However, % itself depends on the phase diagram and the temper-
ature. The approach I use here is to begin by first assuming $ = 0,
obtain a solution for T given all the other parameters, and then use
this T to calculate % using the imposed phase diagram and lever
rule Eq. (4). Then $ is obtained using Eq. (2) and the initial solu-
tion for %, and is subsequently used to update the solution for T via
another solution of the energy equation using the first estimate of
$. This procedure is continued recursively until convergence to the
full non-linear solution.

For the phase diagram I adopt a simplified binary phase loop for
practical purposes. In particular, the lower and upper temperature
limits of the binary phase loop in the models vary according to,

T = #Tinc
2

XpPv(1 − XpPv)
X0(1 − X0)

+ T0 − XpPv (T0 − T1) (38)

and,

T = −#Tinc
2

XPv(1 − XPv)
X0(1 − X0)

+ T0 − XPv (T0 − T1) . (39)

Here, #Tinc is (as in previous sections) defined as the temper-
ature increment across the two-phase loop at a fixed reference
bulk composition X0. T0 and T1 are the temperatures of the univari-
ant transitions at the end member compositions X = 0 and X = 1,
respectively. T0 and T1 are both a function of pressure, and vary
according to,

T0 = T0,cmb + (P − Pcmb),, (40)

and,

T1 = T1,cmb + (P − Pcmb),, (41)

where P is the pressure and Pcmb is the CMB pressure. This for-
mulation yields a simplified binary phase loop of the kind that
would arise when there is continuous solid solution of a pair of
components in both phases, and its analytical simplicity is con-
venient for use in the computations carried out here. While more
realistic thermodynamical models are desirable, these introduce
more parameters and at present there are too few constraints to
make them more useful than a generic description. Indeed, it is not
even certain whether there exists a continuous two-phase binary
solid solution loop for various components that are relevant to
a Pv–pPv equilibrium. Thus in the context of the present study,
exploring model space in terms of any particular thermodynamic
model is premature. The simplified phase diagram adopted here
is illustrated in Fig. 3. Since P and Pcmb are known, the basic form
of the phase diagram in this case depends only on the parameters
, ,#Tinc , X0, T0,cmb and T1,cmb. Note that the pressure increment of
the two-phase loop #Pinc can be obtained using #Pinc =#Tinc, ,
while the depth increment at constant temperature #zinc is given
by#zinc =#Tinc,/"g.

There exist many potential candidates for the range of compo-
sition variations in both Pv and pPv. Important solid solution series
might include the FeSiO3–MgSiO3 binary, and/or systems involv-
ing various kinds of substitutions of Al2O3 (which may or may not
involve changes in Fe oxidation state). In the present models, the
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Fig. 3. Perspective sketch of the kind of phase diagram considered in this study. The
form of the phase diagram in the T–X plane does not vary with pressure apart from
an upward or downward shift that follows the Clapeyron relation.

generic fraction X is taken to be the solute representative of the non-
MgSiO3 component in a given solution series, such as the fraction
of FeSiO3 in either Pv or pPv. Thus X is of order 10%, representa-
tive of abundances of these oxides in the mantle. This means that
the composition in either phase will always be near the MgSiO3
end-member. Because the boundaries of the two-phase loop con-
verge at the end-member, and diverge in the direction of increasing
X, there is a basic form imposed upon the relevant portion of the
phase diagram. Thus a smaller value of X may be compensated by an
increase in#Tinc , and similar behavior would be obtained because
the compositions still remain close the the edge of the binary phase
loop.

Note that in this model the addition of solute X may either stabi-
lize pPv or Pv, depending on the relative values of T0,cmb and T1,cmb.
If addition of X favors formation of pPv at constant temperature
(T0,cmb < T1,cmb), then component X may be said to stabilize pPv
at lower pressures relative to the MgSiO3 end-member. If, on the
other hand, addition of X favors formation of Pv at constant tem-
perature (T0,cmb > T1,cmb), then component X may be said to shift
the phase change to higher pressures. Either behavior is possible
for the Pv–pPv phase change.

For the thermal conductivity a typical phonon-dominated
model is employed, and varies like k = kcmb(Tcmb/T), where kcmb
is the thermal conductivity of rock at the CMB temperature Tcmb.
A relatively low value of kcmb = 5 W/m/K is adopted, consistent
with the phonon contribution to k that motivates the form of the
function k(T). Radiative contributions to thermal conductivity are
very poorly constrained in the deep mantle, and are ignored in the
present models. The density and gravity are taken directly from
the PREM model (Dziewonski and Anderson, 1981). The specific
heat is assumed to be constant at a value of 1200 J/K/kg. The ref-
erence value for the Clapeyron slope is taken to be , =13 MPa/K,
a value now favored by a reconciliation of numerous laser-heated
diamond anvil cell (LHDAC) experiments to a common MgO pres-
sure standard (Hirose et al., 2006; Hirose, 2006; Tateno et al., 2009),
and which is consistent with plausible temperatures implied in the
core for a pPv double-crossing (Hernlund and Labrosse, 2007). The
nominal value of the volume change #v is taken to be indepen-
dent of composition and is usually set at 1%, although we explore
other values below. #s is computed by using the Clapeyron rela-
tion#s =#v, , thus varying#v leads to a proportional variation in
#s. Thermal expansivity, which affects only the adiabatic gradient,

Table 1
Parameter values considered in this study.

Quantity Value (range, if applicable)

"Pv 5500 kg/m3

g 10.3 m/s2

, 13 MPa/K
#V 1 (1–4)%
#Tinc 300 (200–500) K
ε̇ 2 × 10−16 (10−16.5−10−15) sec−1

Tcmb 4000 K
T∞ 2500 K
kcmb 5 W/m/K
cp 1200 J/K/kg
X0 0.15
T0,cmb 3600,3600 K
T1,cmb 2600,4600 K

Values of parameters, and their ranges (if applicable), used in the numer-
ical solutions presented in Figs. 4–7.

is set to a constant value of 5 × 10−6 K−1. Although the adiabatic
gradient is not found to be important, it is included here for illus-
trative purposes. The CMB temperature is taken to be Tcmb =4000 K,
and the temperature 1000 km above the CMB is set to 2500 K. The
nominal value of the strain-rate is taken to be ε̇ = 2 × 10−16 s−1,
but this is also varied. For#Tinc , X0, T0,cmb and T1,cmb governing the
basic form and position of the phase diagram, we take as our nom-
inal values #Tinc = 300 K, X0=0.15, T0,cmb = 2600 K and T1,cmb =
3600 K. These parameters correspond to a pressure increment
#Pinc =3.9 GPa (depth increment #zinc =69 km) at constant tem-
perature. For these relative values of T0,cmb and T1,cmb, the addition
of the solute represented by the fraction X shifts the equilibrium in
the direction of Pv when pressure and temperature are held con-
stant. Cases are also performed with the relative variation reversed,
so that addition of solute X stabilizes pPv. The above parameter
values are summarized in Table 1.

5.2. Model results

Fig. 4 shows the effect of strain-rate variations on the form of
the solution obtained for the geotherm and fraction of pPv. These
are cases where T0,cmb =3600 K and T1,cmb =2600 K, such that addi-
tion of X stabilizes Pv. As predicted earlier in Eq. (17), the length
scale, or thickness, of the boundary layer at steady conditions varies
inversely to

√
ε̇, such that the boundary layer is compressed for

higher values of ε̇. This behavior is straightforward, and varies lit-
tle from what we already obtained using analytical solutions. This
example shows that pPv can be completely absent if the down-
welling flow is weak and the thermal boundary layer is thick, even
though the temperatures high above the TBL are equal in all cases.
As the boundary layer thins with higher strain-rate, the geotherm
dips into the two-phase region and pPv is formed. However, for a
geotherm that enters only the two-phase region, but does not pass
into the Pv-free region to produce a Pv-free “core,” there is a smooth
variation in pPv fraction and there is no clear distinction between
an upper and lower crossing. Still, the pPv abundance profile is non-
linear, and large gradients in phase exist at the top and bottom of the
pPv-bearing region, such that a positive and negative discontinuity
could still be produced at the top and bottom of the pPv-bearing
region. Using seismology alone, it might be difficult to distinguish
this case from those where a Pv-free core forms between the upper
and lower crossing, because both produce positive and negative dis-
continuities. However, the total change in phase abundance accross
the steepest gradient could be smaller if the geotherm barely enters
the Pv–pPv co-existence region, which would lead to a weaker
apparent discontinuity in seismic velocity. Latent heat deflection
is the only effect that causes the geotherm to differ substantially in
appearance from a simple error function profile. Above the upper-
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Fig. 4. Effect of strain-rate variations on the form of the solution obtained for the
geotherm and fraction of pPv. The computational domain extends to 1000 km above
the CMB, however, only the lowermost 400 km are shown. The two-phase region
projected onto the T–z plane is outlined by thin lines.

crossing, latent heat deflection of the geotherm assumes the form
of a “diffusive pre-cursor” mostly above the two-phase region. The
geothermal gradient steepening effect discussed previously for the
lower-crossing is not visually obvious for this parameter range.

In all cases in Fig. 4 we observe that the gradient in phase fraction
is greatest at the Pv-rich end of the two-phase regions for both the
upper and lower crossing. Fig. 5 shows the same models as those in
Fig. 4, except that in these cases we suppose that addition of solute

Fig. 5. Same as in Fig. 4, except in these cases the addition of solute X stabilizes pPv
(as opposed to stabilizing Pv).

X stabilizes pPv by taking T0,cmb =3600 K and T1,cmb =4600 K. The
primary difference in the results of this case is that the steepest gra-
dients in phase occur at the pPv-rich end of the two-phase regions,
while the gradients are shallower at the Pv-rich side. Another con-
sequence of this change that can be observed is that the diffusive
precursor is moved to deeper levels inside the two-phase region for
the upper crossing. The cases presented in Figs. 4 and 5 demonstrate
that the steepest gradients for both the lower and upper crossing
will be produced at the Pv-rich end of the two-phase region(s) when
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an increase in X tends to stabilize Pv, and occurs at the pPv-rich end
when increase in X stabilizes pPv. Both cases tend toward opposite
curvature in pPv abundance, however, both could produce a similar
pair of discontinuities.

The deflection of the geotherm by latent heat is an interesting
phenomenon, and it is interesting to explore how this behavior
changes as more extreme variations of the parameters are consid-
ered. Fig. 5 shows the effect of volume change on the form of the
solution obtained for the geotherm and fraction of post-perovskite.
Because #s varies in proportion to the volume change (because
, is fixed), the latent heat varies in proportion to #v. The results
illustrate that the temperature change over the diffusive precursor
increases as#v is increased, and the geotherm is deflected to higher
temperatures and initially away from the two-phase region. In the
case shown in Fig. 5, this causes the part of the geotherm dipping
below the two-phase region to become pushed upward into the
inside of the two-phase region, such that Pv-free rock never occurs
inside the pPv-bearing region. In all of the cases examined, there is
no obvious visible effect of the geothermal gradient steepening at
the lower crossing and it does not appear to play a significant role in
the shape of the geotherm. The positive deflection of the geotherm
at the upper boundary actually tends to decrease the thermal gradi-
ent beneath it because the CMB temperature is fixed, thus by itself
the diffusive precursor has the effect of lowering the CMB heat flux
relative to the case where there is no phase transition. Because this
effect at the upper crossing increases in proportion to the same fac-
tors that cause latent heat geothermal gradient steepening at the
lower boundary, the two effects work in opposite directions as the
other with respect to affects upon CMB heat flux. Thus the net effect
of latent heat for both the upper and lower crossing will be less than
one would find by considering the energetics of the lower crossing
alone.

Fig. 7 explores the consequences of broadening the two-phase
region by increasing the pressure increment across the binary
phase loop. The geotherm does not change substantially between
these cases, however, the two-phase region grows to the point
where the geotherm never fully dips below the Pv-out level and
the entire pPv lens becomes mixed in phase. Yet the sharpest gra-
dients in pPv fraction in this case remain at the upper and lower
boundaries, and therefore in the case where an increase in X shifts
the equilibrium toward Pv, the sharpest gradients in phase would
still remain at the boundaries of the two-phase region. Note that
the strength of the seismic velocity contrast across the portion
of the two-phase region exhibiting the steepest gradients might
decrease in this circumstance because the change in phase frac-
tion is smaller. Note also that the highest gradients in pPv at the
upper/lower boundaries of the pPv lens become steeper as the
two-phase increment increases in size, which would further help
to accentuate these upper and lower gradients as seismic features.
This is at first sight a very surprising result, because the most simple
concept of a two-phase region with phase fraction variations that
are approximately linear would lead one to believe that the oppo-
site is true. However, the kind of behavior found here is not without
precedent, and was previously described by Stixrude (1997) in the
context of shallower mantle phase transitions. Thus the present
models verify that the same phenomenon applies to the Pv–pPv
phase change: a broad two-phase loop leads to sharper gradients
in phase fraction, and we would then expect that broad two-phase
regions can produce very sharp seismic discontinuities arising from
gradients in phase abundance alone.

6. Discussion and summary

The increasingly ubiquitous findings of a deeper velocity
decrease discontinuity in D” that is predicted by the pPv double-

crossing model (e.g., Thomas et al., 2004a,b; van der Hilst et al.,
2007; Sun et al., 2006; Lay et al., 2006; Kawai et al., 2007a,b) is
in contrast to the a priori expectation that detecting a velocity
decrease – particularly in the presence of realistic levels of seismic
noise – should be very difficult (e.g., Flores and Lay, 2005). Nega-
tive velocity gradients turn propagated seismic energy downward
and de-focus it away from the surface where it would otherwise be
recorded as a strong feature in seismograms. Furthermore, veloc-
ity decrease discontinuities do not produce unambiguous signals
that could readily be detected by a larger scale array (such as the
wavefield triplication associated with velocity increase discontinu-
ities). The particular reasons why this lower discontinuity seems
easier to detect than it ought to be remains an open question. The
present numerical results show that the gradients in phase fraction
at the lower crossing are almost always steeper than those associ-
ated with the upper crossing, which might help to provide an added
sharpness to the lower discontinuity and aid its detection. The rea-
sons for this enhanced sharpness at the lower crossing appear to
be simply related to the geometry imposed by a steep geotherm
passing through the two phase region just above the CMB.

The findings of the above sections should provide some use-
ful information for interpreting the effects of a two-phase region
on the gradient thickness of seismic discontinuities expected from
a Pv–pPv phase change. While the appropriate effect cannot be
assessed until further progress is made in constraining the phase
diagram, the models demonstrate a range of potential complex-
ity and behavior. It is clear from the foregoing results that the
width of a two-phase loop alone cannot be considered a good
proxy for the seismic velocity “gradient thickness” associated with
a phase change. Broadening the two-phase loop may actually cause
these gradients to become more sharp, not less sharp, owing to the
strongly non-linear variation this broadening induces in the phase
fraction. It is worthwhile to briefly consider the increased gradients
in phase fraction near the boundaries of the two-phase region in
more detail. One simple procedure is to adopt the linearized phase
diagram shown in Fig. 8 for purposes of estimating d%/dz analyti-
cally, a form that is approximately valid for compositions near the
end-member of simple binary phase loops. Consider XpPv given by
the linear form,

XpPv = ApPv(T0 − T) = ApPv


Tref +

"g(zref − z)
,

− T
�
, (42)

where ApPv is a constant, and T0 is the temperature for transforma-
tion of the pure end-member component at X = 0. T0 is a function
of depth z owing to the pressure dependence of equilibrium and
varies asT0 = Tref + "g(zref − z)/, , such thatT0 = Tref when z = zref .
A similar expression is adopted for XPv, namely,

XPv = APv(T0 − T) = APv


Tref +

"g(zref − z)
,

− T
�
, (43)

where APv is another constant. Writing#X = XPv − XpPv,

#X =#A

Tref +

"g(zref − z)
,

− T
�
, (44)

where #A = APv − ApPv. Ignoring the small difference in density
between Pv and pPv, an expression for d%/dz in this linearized case
is given by differentiating the lever rule, Eq. (4), to obtain (following
some algebraic manipulation),

d%
dz

=
% + (XpPv/#X)

T0 − T

⇣
dT
dz

+ "g
,

⌘
=

✓
% +

XpPv

#X

◆
1
L%
. (45)

where 1/L% = (dT/dz + "g/,)/(T0 − T) defines a length scale L%
for variations in %. Note that for the upper crossing, the factor
dT/dz + "g/, is positive, while for the lower crossing it is neg-
ative. When the upper and lower two phase regions merge into
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Fig. 6. Effect of volume change on the form of the solution obtained for the geotherm
and fraction of post-perovskite. Because #s varies in proportion to the volume
change, a larger latent heat is implied by larger volume changes, causing the
geotherm to become significantly deflected at the diffusive precursor.

one another and only a single large mixed phase region exists, the
turnaround in phase production – or maximum pPv yield – occurs
where dT/dz = −"g/, , and the geotherm gradient is equal to the
phase boundary gradient. There exist two limiting behaviors for
the phase variation in this example which depend directly on the
parameters governing the phase diagram. If XpPv/#X >> 1 (corre-
sponding to an infinitesimally thin binary loop width) then Eq. (45)

Fig. 7. Effect of temperature and depth increment of the two-phase loop on the form
of the solution obtained for the geotherm and fraction of post-perovskite. Note that
the highest gradients in pPv at the upper/lower boundaries of the pPv lens become
steeper as the increment increases, while the jump in pPv fraction at the boundaries
decreases to about 1/2 even as they become sharper.

yields a linear variation in % with depth,

d%
dz′

=
XpPv

#X
, (46)

where z′ = z/L% (here L% is assumed constant for purposes of illus-
tration). On the other hand, if XpPv/#X << 1 (corresponding to a
very broad binary phase loop) then Eq. (45) yields an exponential
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Fig. 8. Sketch of the linearized phase diagram used for purposes of obtaining ana-
lytical estimates of d%/dz. Variables are described in the text.

variation of % with z,

d log%
dz′

= 1. (47)

This simple comparison therefore captures the enhanced non-
linear variation of phase fraction revealed by the numerical solu-
tions (Fig. 6) as the binary phase loop width is increased. Essentially,
when the two-phase loop is narrow, the gradient in phase can be
linear, but sharp owing to the intrinsic thinness of the co-existence
region. On the other hand, when the two-phase region is broad,
the phase fraction varies exponentially with depth and therefore
can still exhibit sharp gradients where phase fraction varies rapidly
over length scales much smaller than the width of the two-phase
loop. The result in either case are sharp seismic discontinuities.

It is important to note that phase abundance might not be the
only factor influencing the gradient of seismic velocity relative
inside a mixed phase Pv–pPv region. Another factor that may be
important is the possibility for seismic anisotropy to develop in
pPv-bearing regions owing to deformation-induced fabrics (e.g.,
Iitaka et al., 2004; Tsuchiya et al., 2004b; Oganov et al., 2005;
Yamazaki et al., 2006; Merkel et al., 2007). Such fabric transitions

might be needed in order to account for the magnitude of seismic
velocity changes associated with pPv-related D” discontinuities if
the difference in seismic velocity is too small to be accounted for
using only isotropic mixtures of Pv and pPv (Murakami et al., 2007).
Consider, for example, the case where pPv is rheologically weak
relative to Pv under deviatoric stress. In this case, at some criti-
cal fraction the pPv phase will become the rheologically dominant
phase and the rheology of the two-phase mixture will undergo
rapid weakening above this critical fraction of pPv. If this weak-
ening is accompanied by enhanced deformation and subsequent
production of a deformation-induced fabric yielding average elastic
anisotropy, then a sharp transition in seismic velocity could be pro-
duced. Any such rheologically controlled jump in seismic velocity
will necessarily be smaller in extent than the equilibrium two-
phase region, and is therefore a way of producing velocity jumps
that are sharper than those arising from phase fraction variations
alone.

A potentially exciting direction for use of these kinds of models
in the future is the inverse problem of determining quantities of
fundamental importance using constraints from seismology and
mineral physics. The study of Lay et al. (2006) was the first to
attempt to use pairs of seismic discontinuities attributed to a pPv
double-crossing in order to constrain the form of the geotherm in
D”. It was shown that even if one assumes a simple error func-
tion form for the geotherm, the problem is non-unique because the
number of uncertain parameters exceeds the number of input data.
An exploration of this range of uncertainty was given in that study.
Nevertheless, as mineral physics constraints upon thermal con-
ductivity as well as quantities such as the temperature difference
between the CMB and Pv–pPv equilibrium points that may be iden-
tified with seismic discontinuities improve, the kinds of models
described here may be used to perform such inversions. An exam-
ple from the numerical model used in this study is shown in Fig. 9.
This illustrates that if the values for the phase boundary, CMB tem-
perature, and thermal conductivity were well-constrained, then a
researcher could in principle take a pair of observed discontinuities
and immediately begin to infer the heat flux, temperature changes,
and even kinematic factors such as the strain-rate in a given por-
tion of D”. Other potential applications might include using models
of this kind to produce synthetic seismograms for various param-
eters, and then comparison of the results with real seismograms
in order to contrain the values of some of these quantities using
seismic data alone.

Fig. 9. Illustration of the kind of inverse procedure that could in principle be performed with the numerical model used in this study. In each case, a given pair of upper and
lower discontinuity depths is input, and the parameters are then varied so that the steepest gradients in phase match the input depths. These examples show how CMB heat
flux, strain-rate, and temperature change across the boundary layer vary as a function of different discontinuity depths.
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