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We present TempDAC, a 3-D numerical model for calculating the steady-state temperature

distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC

solves the steady heat conduction equation in three dimensions over the sample chamber, gasket,

and diamond anvils and includes material-, temperature-, and direction-dependent thermal

conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and

laser absorption properties. The model has been validated against an axisymmetric analytic

solution for the temperature distribution within a laser-heated sample. Example calculations

illustrate the importance of considering heat flow in three dimensions for the laser-heated

diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead

to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian

laser beam. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830274]

I. INTRODUCTION

The laser-heated diamond anvil cell (LHDAC) is the

experimental tool for reaching static high pressures and tem-

peratures that correspond to the conditions of the deep interi-

ors of terrestrial planets and moons. The diamond anvil cell

is capable of subjecting materials to over 300 GPa of pres-

sure, and materials can be heated to thousands of degrees by

focusing infrared lasers onto the sample through the trans-

parent diamond anvils [e.g., Ref. 1]. In situ characterization

of sample properties can be performed using microscopy,

spectroscopy, and a variety of X-ray-based tools including

scattering and diffraction. Interpreting the data in terms of

deep Earth and planetary interior applications requires both

accuracy and precision in the measurements of properties,

pressures, and temperatures. Very high temperatures are

difficult to generate and control in the diamond anvil cell

because of the small sample sizes and the fact that the

samples are in close proximity to a relatively much larger

volume of high-thermal-conductivity diamond, which

behaves effectively as a heat sink. Therefore, a great deal of

continuous wave (CW) laser power needs to be absorbed by

the sample in order to maintain quasi-steady-state hotspot

temperatures. Most mineral physics LHDAC experiments

involve this type of continuous heating. Because of the

extreme heat flow conditions, the steady-state temperature

gradients in both the axial and radial directions are steep,

and the temperature distribution is difficult to measure accu-

rately, leading to absolute uncertainties and misleading error

analysis for measurements of physical properties including

phase stability, melting temperatures, equations of state, and

chemical partitioning at high pressures and temperatures in

the LHDAC.

Mathematical models of LHDAC temperature gradients

are useful for multiple purposes. These include estimating

the magnitude of temperature gradients for a particular

experimental design, calculating the effect of temperature gra-

dients on real measurements,2 creating synthetic temperature

vs. power curves for thermal conductivity measurements,3,4

and estimating uncertainties in measured temperatures arising

from uncertainties in experimental properties. For example,

one of the important applications of the LHDAC is its use in

conjunction with synchrotron-based X-ray diffraction to

measure material phase and lattice volume in situ at high

pressures and temperatures. For high-quality powder X-ray

diffraction measurements, the sample volume should be maxi-

mized. But during laser heating, especially at high pressures,

this can possibly be compromised by large temperature gra-

dients over the X-rayed volume. The three-dimensional nature

of the temperature gradients means that if there are tempera-

ture gradients present over the length scale of the X-ray spot,

the X-ray volume will be heavily biased towards the lower

temperatures within the X-ray volume, even if the hotspot is

well-centered.2 Multiple approaches should be taken to fully

address this issue, including considerations in experimental

design, such as broadening the laser hotspot, as well as in data

analysis, such as providing a precise measurement of the tem-

perature gradient and the relationship between the hotspot and

the X-ray beam during laser heating. Modeled 3-D tempera-

ture gradients can be used to aid in experimental design as

well as to quantify the effect of temperature gradients on the

experimental results. Similar methods have also been used in

other kinds of high-pressure experiments to improve designs

and minimize thermal gradients.5

We created a 3-D numerical code (TempDAC) for mod-

eling heat flow within the LHDAC that allows us to calculate

the steady-state temperature distribution during continuous

heating experiments. Here, we present and discuss the model,

validate it against an existing lower-dimensional analytical

model, and use it to demonstrate various trends for tempera-

ture distributions in the diamond anvil cell. Like existing
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models,3,6–9 TempDAC solves the steady-state heat conduc-

tion equation within the LHDAC. However, previous numeri-

cal and analytic LHDAC models presented in the literature

have assumed either axisymmetry and/or temperature-

independent thermal conductivity. The TempDAC model is a

fully 3-D model with flexible geometries, allowing it to be

tailored to model particular experimental conditions. The

sample can be modeled as a single partially absorbing mate-

rial with a specified laser absorption coefficient, or as a com-

posite, e.g., a transparent insulator with an opaque metal foil

of specified thickness. Thermal conductivities are material-,

temperature-, and can be direction-dependent (i.e., aniso-

tropic). Laser heating can be modeled as single- or double-

sided, with a customizable beam profile. The 3-D nature and

flexible geometries of TempDAC allow it to fully describe

the three dimensional temperature distributions that are inher-

ent in CW LHDAC experiments.

II. MODEL DESCRIPTION

A. LHDAC thermal environment

The characteristics of LHDAC temperature distributions

are governed by the high thermal mass of the diamond anvils

compared with the sample and the small physical size of the

experiments. These factors result in steep temperature gra-

dients in the axial and radial directions as well as fast time-

scales for thermal equilibration. For example, for a typical

sample thickness L of a few tens of microns and a thermal

diffusivity Œ of �10�6 m2/s, the heat diffusion timescale

(L2/Œ) across the sample is �10�4 s. Across �3-mm dia-

mond anvils, it is �10�2 s (assuming Œ� 10�3 m2/s for

diamond). Thus, during heating with CW laser power,

steady-state temperature distributions emerge very quickly

and decay quickly once the laser is turned off. During CW

laser heating, the typical temperature gradients within the

sample chamber are extreme (on the order of 100 K/lm, see

example in Fig. 3). Although samples within the diamond

cell do radiate some energy away (indeed, the typical method

of temperature measurement in LHDAC experiments is spec-

troradiometry), the extreme temperature gradients mean that

lattice conduction is expected to be the dominant mechanism

of heat transport within the diamond cell in most experi-

ments, and measured temperature gradients are consistent

with heat transport by phonons.8–11 The steady-state heat

conduction equation has been shown to be appropriate to

describe heat flow within the LHDAC for continuous heating

experiments and has been used in previous models [e.g.,

Refs. 8 and 9]. An ambient temperature boundary condition

is expected to be valid due to the small sample size and high

thermal conductivity of the diamond anvils and metal gasket.

However, in real laser heating experiments, the diamond

anvil cell does not remain in steady state; in fact, the entire

cell slowly warms over the course of a heating experiment.

Typically, the temperature change is at most a few tens of

degrees, such that the approximation of a steady state with

ambient temperature boundaries remains valid, especially for

short experiments or lower peak temperatures. At synchro-

tron facilities, diamond cells are often water-cooled to main-

tain the cell at a constant temperature during laser heating.

B. Governing equations and numerical
implementation

The TempDAC model builds upon a previous thermal

modeling effort12 for describing temperature distributions

within solid-medium high-pressure experiments, extending

the solution to the full 3-D case. As in the previous model,

the equation governing heat conduction within the LHDAC

is written as

r � krT þ Q ¼ 0; (1)

where k is the thermal conductivity tensor, T is temperature,

and Q is an internal heating term representing the absorbed

laser power. If the principal axes of the thermal conductivity

tensor are aligned with the Cartesian coordinates x, y, and z,

then Eq. (1) becomes

@

@x
kx
@T

@x

� �
þ @

@y
ky
@T

@y

� �
þ @

@z
kz
@T

@z

� �
þ Q ¼ 0; (2)

where kx, ky, and kz represent the inner products of the ther-

mal conductivity tensor with unit vectors along the x, y, and

z axes, respectively.

The numerical model domain is illustrated in Fig. 1. The

domain is cubic and comprises equal-sized rectangular cells.

The full extent and shape of the diamond anvils and metal

FIG. 1. Illustration of the numerical

model domain. The image on the left

depicts an axial slice through the do-

main. The presence of a laser absorber

is optional. The image on the right is a

view of the interior of the model do-

main. Note that the sizes of the sample

chamber and absorber and the domain

length scale are all flexible and not

confined to the particular geometry

depicted in the cartoon.
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gasket are not modeled. But, since the temperature generally

drops to ambient values within or very close to the edges of

the sample chamber, this is not expected to affect the calcu-

lated temperature distribution. For cells with dimensions Dx,

Dy, and Dz, a finite volume form of Eq. (2) can be written as

kx;iþ1
2
;j;k

Tiþ1;j;k � Ti;j;k

Dx2
þ kx;i�1

2
;j;k

Ti�1;j;k � Ti;j;k

Dx2

þ ky;i;jþ1
2
;k

Ti;jþ1;k � Ti;j;k

Dy2
þ ky;i;j�1

2
;k

Ti;j�1;k � Ti;j;k

Dy2

þ kz;i;j;kþ1
2

Ti;j;kþ1 � Ti;j;k

Dz2
þ kz;i;j;k�1

2

Ti;j;k�1 � Ti;j;k

Dz2

þ Qi;j;k ¼ 0: (3)

The subscripts i, j, and k are used to refer to the value of a

parameter at a particular discrete cell (e.g., T(iDx, jDy, kDz)

! Ti,j,k). The temperatures are defined at the center of each

cell, while the conductivities are defined on the faces (dis-

placed 1=2 cell length from the cell centers). Each cell con-

sists of a single material (e.g., diamond, gasket, sample) and

has its own functional variation of thermal conductivity with

temperature. Therefore, thermal conductivity is naturally

defined at the center of each cell and interpolation is required

to obtain thermal conductivity values at the cell faces, which

is most compatible with the calculation of heat flux at the

midpoint between adjacent cells. In our implementation, the

harmonic interpolant is used, since it is the only interpolation

that exactly conserves the continuity of heat flux between

cells. The conductivity values in Eq. (3) are obtained from

the cell-center conductivity values using the formulas

kx;i�1
2
;j;k ¼

2kx;i;j;kkx;i�1;j;k

kx;i;j;k þ kx;i�1;j;k
; kx;iþ1

2
;j;k ¼

2kx;i;j;kkx;iþ1;j;k

kx;i;j;k þ kx;iþ1;j;k
;

ky;i;j�1
2
;k ¼

2ky;i;j;kky;i;j�1;k

ky;i;j;k þ ky;i;j�1;k
; ky;i;jþ1

2
;k ¼

2ky;i;j;kky;i;jþ1;k

ky;i;j;k þ ky;i;jþ1;k

kz;i;j;k�1
2
; ¼

2kz;i;j;kkz;i;j;k�1

kz;i;j;k þ kz;i;j;k�1

; kz;i;j;kþ1
2
; ¼

2kz;i;j;kkz;i;j;kþ1

kz;i;j;k þ kz;i;j;kþ1

:

(4)

When boundary conditions are imposed, Eq. (3) becomes an

invertible system of equations over the entire model domain.

We choose to apply the condition that the exterior bounda-

ries of the domain remain at a constant temperature Tc,

where Tc is some ambient temperature (typically 300 K). The

boundary condition is enforced using ghost cells adjacent to

and outside of the edges of the domain. The ghost cells are

the same size as the interior cells and are considered to have

the same thermal conductivity as their immediate neighbor

cells.

The absorbed laser power is modeled in one of two

ways, depending on whether the sample is assumed to con-

sist of (1) an opaque absorbing foil within a transparent insu-

lating material, or (2) a partially absorbing material. For an

opaque foil, the heating term Qi,j,k is assumed to be nonzero

only within cells at the foil surface where the laser is inci-

dent, i.e., the laser is assumed to be absorbed only at the

edge of the foil. If the laser is aligned with the z-direction,

then Qi,j,k varies with x and y according to the assumed 2-D

intensity distribution of the laser beam. For the case of a

partially absorbing material, Qi,j,k is nonzero within the

entire sample and varies with x and y according to the laser

beam intensity distribution and with z depending on the

assumed material absorption coefficient. In this case, Qi,j,k is

written as

Qi;j;k ¼ aIi;j;k�1; (5)

where a is the absorption coefficient of the material and

Ii,j,k�1 is the laser intensity passing from cell (i,j,k� 1) into

cell (i, j, k). Integrating Eq. (5) over a sample of thickness L
gives the Beer’s law result that the total absorbed power is

equal to Pl(1�exp(aL)), where Pl is the total laser power.

Therefore, partially absorbing samples are conveniently

described by an optical thickness s that is the product of the

absorption coefficient and the sample thickness: s¼ aL.

C. Solution method

The numerical implementation uses a full approximation

storage multi-grid solver. This technique allows for high re-

solution near the center of the sample where temperature gra-

dients are very large while leaving other areas of the domain

less resolved in order to save computation time. The linear

system can be written as

LhTh ¼ Fh; (6)

where Fh¼�Qh on the finest grid. Let, �Th be a guess or

approximation of Th, and define the error as eh¼Th� �Th.

Then, Eq. (6) can be written as

Lheh ¼ Rh ¼ Fh � Lh �Th; (7)

where Rh is the residual on grid h. The residual is interpo-

lated to a coarser grid H, giving

LHTH ¼ LHeH þ LH IH
h Th

� �
¼ IH

h Rh þ LH IH
h Th

� �
; (8)

where the initial guess for TH is given by Ih
HTh. The full

approximation for temperature is thus stored on each grid

level in this method, allowing one to treat non-linearity at

both coarse and fine scales.

III. VALIDATION OF NUMERICAL SOLUTION

In order to verify the output of the numerical model, we

compared it against an analytic solution for the temperature

distribution within a laser-heated DAC sample. An analytic

solution exists for the simplified case of a cylindrically sym-

metric sample with temperature-dependent thermal conduc-

tivity, as shown by Panero and Jeanloz.9 In their model, the

sample is represented by a cylinder with boundaries at ambi-

ent temperature and uniform heating in the axial direction.

The analytical model domain is shown in Fig. 2. Although

the analytical model domain is not exactly equivalent to the

numerical model, which explicitly includes the effects of the

diamond anvils and metal gasket, it was shown to closely

replicate the temperature profiles from previous numerical

simulations.9 The assumption of ambient-temperature
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boundaries has also been demonstrated to be valid by previ-

ous numerical models, which have shown that the tempera-

ture within a laser-heated diamond cell drops to near-

ambient at the surfaces of the diamond anvils in the axial

direction (z, parallel to laser beam) and within the sample

chamber in the radial direction (r, perpendicular to laser

beam) [e.g., Ref. 6]. The assumption of uniform axial heat-

ing is applicable to the case of a partially absorbing sample

without insulating layers that is optically thin. The steady-

state heat conduction equation for a laser in TEM00 mode

can then be written as9

r � k Tð ÞrTð Þ ¼ �A0 exp
r2

R2

� �
: (9)

Here, k is the thermal conductivity of the sample, T is

temperature, A0 is the peak volumetric absorbed power, r is

radius, and R is the Gaussian laser waist size. Panero and

Jeanloz9 linearized this equation using the Kirchhoff

transform

h ¼ 1

k0

ðT

T0

k sð Þds; (10)

where k0 is the thermal conductivity at temperature T0. The

heat equation can then be solved analytically for h and

transformed to a solution for T using any assumed tempera-

ture dependence of the sample thermal conductivity.

Following the analysis of Panero and Jeanloz,9 the general

solution for h for a cylindrical sample of thickness 2D and

radius Rc is

h ¼ A0R2

k0

1

4
E1 R2

c

� �
� 1

4
E1 r2ð Þ þ 1

2
log

Rc

r

� �� �

þ
X

i
ci cosh

aiD

RcR
z

� �
J0

ai

Rc
r

� �
; (11)

where E1 is the exponential integral function, J0 is the

zeroth-order Bessel function of the first kind, ai is the ith
root of J0, ci are constants, and z is the axial coordinate

which extends from �D to þD. The constants ci are calcu-

lated in order to satisfy the boundary conditions. Panero and

Jeanloz9 provided numerical solutions to ci for a particular

experimental geometry. A general form for the constants ci

can be found using the orthogonality of Bessel functions.

The solution for ci is then written as

ci ¼
�A0R2

k0

ðRc

0

1

4
E1 R2

c

� �
� 1

4
E1 r2ð Þ þ 1

2
log

Rc

r

� �� �
J0

ai

Rc
r

� �
rdr

ðRc

0

cosh
aiD

RcR
z

� �
J0

ai

Rc
r

� �
J0

ai

Rc
r

� �
rdr

: (12)

Temperature profiles calculated using Eqs. (9)–(12) are com-

pared with the output from TempDAC in Fig. 3. The analytic

solution was calculated out to i¼ 5 only, since adding further

terms resulted in a change in the peak temperature of less

than 0.1%. For the comparison, we assumed a sample thick-

ness of 50 lm, sample radius 90 lm, and laser profile full

width at half max of 20 lm. The boundary temperature was

set to T0¼ 300 K. The sample thermal conductivity was cho-

sen to be 4.0 W/m K at ambient temperature T0, which is the

approximate value for iron-bearing olivine.13 For the numer-

ical model, we used ambient-temperature thermal conductiv-

ities of 1000 W/m K for the diamond anvils14 and 48.0 W/m

K for the metal gasket (appropriate for rhenium).15 A T�1

temperature dependence of thermal conductivity was

assumed for all materials. To compare the analytic and nu-

merical calculations, the assumed laser power was adjusted

such that the peak temperature was calculated to be 2500 K

in the analytic solution (0.7812 W for the model parameters

used here). This laser power value was then used as an input

in TempDAC, which was run at multiple grid resolutions to

test the convergence of the numerical solution. The results of

this test are in Table I. The solutions for grid sizes 128� 128

� 128 and 256� 256� 256 are nearly identical, and well

within the margin of error for LHDAC temperature measure-

ments both compared to each other and to the analytic solu-

tion. Note that we would not expect the numerical solution

to converge exactly to the analytic one, due to the difference

in boundary conditions between the models.

IV. EXAMPLE CALCULATIONS

The TempDAC numerical model can be used to test

hypotheses regarding the thermal response of samples heated

in the diamond anvil cell, to aid in experimental design, and

to help interpret experimental results. In this section, we

show numerical results simulating several different types of

LHDAC experiments in order to demonstrate the use of our

model and to elucidate the characteristics of temperature

distributions within LHDAC samples in the context of real

and imagined experiments. For reference, the assumed

FIG. 2. Illustration of the geometry of the analytical model domain, repre-

senting a cylindrically symmetric partially absorbing sample.
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properties of the materials used in our example calculations

are compiled in Table II.

A. Partially absorbing sample with elliptical laser

In many experimental applications, a laser beam will

not necessarily have perfectly circular symmetry about the

propagation direction. Because the sample temperature

distribution is strongly influenced by the shape of the laser

power profile, it is important to model the laser shape as

accurately as possible when calculating LHDAC temperature

distributions with the goal of interpreting experimental data.

We modeled the temperature distribution for an elliptical

Gaussian laser heating an isotropic, partially absorbing

olivine sample with an optical thickness s of 1.0, where s is

defined as in Sec. II B, a room-temperature thermal conduc-

tivity of 4 W/m K,13 and a T�1 temperature dependence of

thermal conductivity. The laser beam was an elliptical

Gaussian with a FWHM of 20 lm along the x-axis and

30 lm along the y-axis. The sample thickness was set to

40 lm, and the sample radius 80 lm. A rhenium gasket with

a room temperature thermal conductivity of 48 W/m K

(Ref. 15) was assumed. Fig. 4 shows the 2D radial tempera-

ture distribution at the peak of the temperature profile, near

the center of the sample. Although the sample is isotropic,

the temperature contours are elliptical due to the influence of

the laser beam shape. The temperature contours are slightly

less elliptical than the laser beam, owing to the presence of

axial as well as radial heat flow within the LHDAC.

Additional models were run for sample optical thick-

nesses s¼ 0.5 and s¼ 2.0. For each model, the laser power

was tuned to give the same peak sample temperature of

2350 K. Since the peak temperature, sample and laser geo-

metries, and sample thermal conductivity were the same for

each model, the radial temperature distributions at the peak

temperature are the same. However, the axial temperature

distributions differ as shown in Fig. 5. As the optical thick-

ness increases, the peak temperature occurs closer to the

heated side, and less laser power is required to heat the sam-

ple to the same temperature due to the increased absorption

coefficient. For the case of s¼ 0.5, a total laser power of

1.8 W was required; the power was � 37% lower for s¼ 1.0

and � 53% lower for s¼ 2.0.

FIG. 3. Comparison of radial (left plot)

and axial (right plot) temperature

profiles from the analytic model of

Eqs. (9)–(12) and the TempDAC nu-

merical solution. Temperatures at the

TempDAC grid points are represented

by red diamonds; the solid black line

represents the analytic solution. The

numerical result shown was calculated

for grid size 256� 256� 256.

TABLE I. Peak temperature and RMS error for TempDAC numerical model

run with grid size n� n� n. All models were run using the same absorbed

laser power.

n Fine grid cell size (lm) Peak temperature (K) RMS error (K)

16 13.3 876 140.2

32 6.7 1730 78.4

64 3.3 2235 31.8

128 1.7 2515 4.4

256 0.83 2515 4.2

Analytic — 2500 0.0

TABLE II. List of materials used in the TempDAC model validation and

example calculations and the ambient-temperature thermal conductivity of

each material. For all materials, the thermal conductivity was assumed to

vary inversely with temperature except Pt and MgO, for which the tempera-

ture thermal conductivity functions were taken from Terada et al.18 and

Tang and Dong,19 respectively.

Material

Thermal conductivity

at 300 K (W/m K) Source

Diamond 1000 Ref. 14

Rhenium 48.0 Ref. 15

Olivine 4.0 Ref. 13

Graphite 6.8 Ref. 16

Ice VII 3.4 Ref. 17

Platinum 77.8 Ref. 19

MgO 83.2 Calculated at 10 GPa

from Ref. 20

Neon 5.7 Calculated at 10 GPa

using data from Ref. 26
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B. Anisotropic thermal conductivity

While many samples are polycrystalline and randomly

oriented and have isotropic heat flow properties, it is possible

to use the laser-heated diamond anvil cell to measure anisot-

ropy in thermal conductivity of oriented single crystals. To

demonstrate the ability of our model to simulate 3-D thermal

conduction, we modeled laser heating of oriented single-

crystal graphite in the LHDAC. An example hotspot is

shown in Fig. 6. The thermal conductivity of graphite is

highly anisotropic, with the thermal conduction parallel to

the graphite sheets being around 220 times faster than ther-

mal conduction along the c-axis perpendicular to the

sheets.16 Using the thermal diffusivities from Kato et al.,16

the thermal conductivity values in the directions parallel and

perpendicular to the graphite sheets are approximately

1500 W/m K and 6.8 W/m K, respectively. We assumed a

graphite crystal of thickness 80 lm and radius 60 lm, ori-

ented such that the fast and slow thermal conductivity direc-

tions both lay in the radial plane. The insulating material was

assumed to be H2O at �3 GPa (Ice VII), which has an

ambient-temperature thermal conductivity of around

3.4 W/m K.17 A circular Gaussian laser with a FWHM of

27 lm was used, and the thermal conductivities of all materi-

als other than graphite (diamond anvils, rhenium gasket, and

H2O insulating material) were assumed to be isotropic, so

that any ellipticity in the modeled hotspot would be due to

the anisotropy of graphite thermal conductivity alone. The

ellipticity of the hotspot shown in Fig. 6 is �2.5, similar to

the measured ellipticities for oriented graphite in the

LHDAC.18 The hotspot intensity was calculated using the

modeled temperature distribution at the surface of the graph-

ite and assuming Planck emission at 700 nm wavelength.

Only the relative hotspot intensities are compared, so the

absolute value of the emissivity of the graphite at 700 nm is

unimportant.

C. Single- versus double-sided heating with laser
absorber

We modeled several temperature distributions for a

10-lm-thick Pt foil between MgO insulation layers in a

DAC. Three simulations were run: (1) double-sided

laser heating with the Pt foil placed between symmetric

15-lm-thick MgO layers, (2) single-sided heating with the

Pt foil between symmetric 15-lm-thick MgO layers, and

(3) double-sided heating with the Pt foil between asymmet-

ric MgO layers, with the MgO �20 lm thick on one side

and �10 lm thick on the other. The sample chamber was

assumed to have a radius of 80 lm, and the Pt foil a radius

of 40 lm. The lasers had Gaussian intensity profiles with a

full width at half maximum of 20 lm. The thermal conduc-

tivity of Pt was taken from Terada et al.,19 and the thermal

conductivity of MgO from Tang and Dong.20 The MgO

layers were assumed to be transparent and the Pt was

assumed to be opaque such that the laser was absorbed only

within elements at the edge of the foil. Temperature pro-

files from each of the three simulations are shown in Fig. 7.

In each case, the laser power was adjusted in order for the

peak temperature within the sample chamber to reach

2000 K.

FIG. 5. Axial temperature profiles for partially absorbing samples with opti-

cal thickness s¼ 0.5 (black dotted line), s¼ 1.0 (green solid line), and

s¼ 2.0 (purple dashed line).

FIG. 6. Modeled hotspot for laser-heated oriented graphite in a DAC. The

image on the left shows the modeled intensity at 700 nm wavelength of the

2D hotspot in the radial plane at the surface of the heated graphite. The plot

on the right shows intensity contours for the same hotspot.

FIG. 4. Temperature contours in the radial plane for a partially absorbing

sample heated with an elliptical laser. The contours are 150 K apart, with the

peak at 2350 K. The red dashed line shows the FWHM of the elliptical

Gaussian laser beam.
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In all three simulations, there are steep temperature gra-

dients within the MgO layers relative to the Pt layer. When

the heating is double-sided and the insulation layers are sym-

metric, the central temperatures on each side of the Pt foil

are identical. When the laser heats one side only, that side of

the foil has a higher peak temperature. For the model param-

eters used here, the peak temperature is �12% lower on the

unheated side of the Pt foil. The temperature difference

between the two sides would be smaller for a thinner foil or

a foil with higher thermal conductivity. When the MgO insu-

lation layers are of different thickness, the central tempera-

tures on each side of the foil differ. However, this difference

tends to be small, <1% for the model parameters used here.

Therefore, measuring the same temperature on each side

during double-sided laser heating in a DAC does not mean

that the insulation layers are of identical thickness. If the

measured temperatures on the two sides differ, it is more

likely to be due to differences in laser power or laser absorp-

tion than insulation layer thickness.

Another feature of these solutions is that even when

symmetric double-sided heating is implemented, the temper-

ature in the middle of the foil is slightly lower than the tem-

peratures at the foil edges. This effect is due to the 3-D

nature of heat conduction within the LHDAC, and is not

observed in lower-dimensional models. Since a 3D model is

needed in order to fully describe temperature gradients

within the sample chamber, it is especially important to use a

model such as TempDAC when determining the effects of

temperature gradients on experimental results. For example,

when interpreting measurements of temperature-dependent

material properties from X-ray diffraction experiments, it is

important to correctly quantify the effect of temperature gra-

dients over the entire 3-D X-ray volume.

D. “Flat-top” laser

One approach to minimizing temperature gradients over

the X-ray volume during LHDAC diffraction experiments is

to use “flat-top” laser beams [e.g., Refs. 21 and 22]. To cre-

ate a “flat-top,” a beam shaper is used to form a laser inten-

sity distribution that is approximately flat over the extent of

the laser spot size. In order to calculate the type of sample

temperature gradients that would result in flat-top laser heat-

ing experiments, we created a flat-top laser model in

TempDAC. It is impossible to create a truly flat laser beam

experimentally, so we used an approximately flat-top profile

created by summing seven Gaussians. Fig. 8 shows the inten-

sity profile of the modeled flat-top laser beam, which has a

FWHM of 21 lm. For comparison, a Gaussian profile with

21-lm FWHM is also shown. Our modeled flat-top laser

profile is similar to the experimentally created flat-top beam

profile shown by Prakapenka et al.22

We used TempDAC to model temperature distributions

for the flat-top and Gaussian laser profiles shown in Fig. 8.

For each laser profile two models were run, one for a partially

absorbing olivine sample of thickness 40 lm with single-

sided laser heating, and one for a 20-lm-thick Pt foil with

symmetric 15-lm-thick MgO insulating layers and double-

sided laser heating. In each case, the sample chamber radius

FIG. 7. Modeled axial temperature profiles for a 10-lm-thick Pt foil with

MgO insulation layers. The upper plot shows the axial temperature profile

through the center of the sample when laser heating is double-sided. The

center plot shows the axial temperature profile for single-sided laser heating.

The lower plot shows the axial temperature profile for a sample with asym-

metric MgO layers and double-sided heating.
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was 80 lm, and the radius of the Pt foil in the second model

was 40 lm. For each laser profile, the total laser power was

tuned to result in the same peak temperature in order to more

easily compare the temperature distributions. The modeled

radial and axial temperature profiles are shown in Figs. 9 and

10. These temperature profiles illustrate several important

points. First, a flat-top laser profile does not result in a uni-

form temperature distribution. Heat must be conducted away

from the center of the sample, resulting in non-zero tempera-

ture gradients even in areas where the laser profile is very

close to flat. Second, the temperature profiles resulting from a

flat-top laser are not flatter than the temperature profiles from

a Gaussian laser of the same FWHM. In fact, the reverse is

true: radial temperature gradients are shallower for the

Gaussian laser in both cases. Axial temperature gradients are

nearly identical for both laser shapes for the partially absorb-

ing sample [Fig. 9], and shallower for the Gaussian laser

within the metal foil [Fig. 10]. This occurs because the

Gaussian laser beam deposits proportionally more energy

away from the center of the sample, allowing for shallower

temperature gradients near the center. Note, however, that

because of this the Gaussian laser profile also required more

energy in order for the sample to reach the same peak temper-

ature as the flat-top laser (for the model parameters used here,

�12% more absorbed power was required for the metal foil,

and �46% more for the partially absorbing sample). It should

also be noted that for a small X-ray volume and a relatively

wide laser profile, axial temperature gradients can be more

significant than radial temperature gradients. For example, if

an X-ray beam �5 lm in diameter were used with the sample

modeled here, the temperature variations within the X-ray

spot in the Pt foil would be �1% in the radial direction and

�12% in the axial direction for the flat-top laser. The axial

temperature gradient within the Pt foil would be smaller in

the case of a thinner foil or a foil with higher thermal

conductivity.

E. Pressure-dependence of hotspot width

As a sample is pressurized, the heat flow environment in

the diamond cell becomes more extreme due to the thinning

of the insulation layers and the sample. Additional changes

in the heat flow may occur because of pressure-induced

changes in thermal conductivity and absorption of laser

power.23 Here, we examine how the hotspot size and shape

vary at high pressure when the only pressure-induced effect

is quasi-hydrostatic thinning of the sample chamber. We per-

formed calculations for a laser-absorbing foil within an insu-

lating medium assuming that all deformation was confined to

the thinning of the insulation layers. This approximation is

appropriate for an incompressible metal foil within a soft

insulation material. We chose a Pt foil (bulk modulus

260 GPa) within Ne insulation layers (bulk modulus

�1 GPa), using an ambient-temperature thermal conductivity

for Ne of 5.7 W/m K, appropriate for solid Ne at 10 GPa as

calculated using the Leibfried-Schlomann equation25 and

using low-temperature measurements from Weston and

Daniels.26 We also assumed that the sample chamber did not

change radius as it thinned. A change in the sample chamber

radius would have only a minor effect on the temperature

distribution as long as the sample chamber remained wider

than the laser beam, since in typical experiments where the

laser spot is smaller than the sample chamber the tempera-

ture drops to near-ambient well within the sample chamber

radius. Our models show that as the sample thins, the peak

temperature reached for the same laser power is lower.

FIG. 9. The plot on the left shows

modeled radial temperature profiles

through the center of a partially

absorbing olivine sample with an opti-

cal thickness of 1.0 for the flat-top

(black line and symbols) and Gaussian

(blue line and symbols) laser beams

shown in Fig. 8. The plot on the right

shows the corresponding axial temper-

ature profiles through the center of the

sample.

FIG. 8. Comparison of an approximately flat-top laser profile (black line)

and Gaussian laser profile (blue line) with the same FWHM of 21 lm.
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Fig. 11 shows the calculated peak temperature as a function

of insulation layer thickness for a Pt foil in a Ne medium,

heated on each side with a Gaussian laser having a FWHM

of 20 lm and 3.5 W output power. For every �2 lm thin-

ning, the peak temperature drops �100 K. This effect is

solely due to pressure-induced sample thinning, but a similar

effect would be observed for a pressure-induced increase in

thermal conductivity (we ignored the pressure increase in

thermal conductivity for these simulations). Therefore, care

must be taken when interpreting changes in temperature vs.

power curves taken at different pressures. We also modeled

cases for which the laser power is increased in order to reach

the same peak temperature with a thinner sample. Fig. 12

shows radial temperature profiles for models with insulation

layers that are 20 lm, 16 lm, and 12 lm thick on each side.

In order to reach the same temperature of 2260 K, the sample

for which the insulation layers had thinned to 16 lm required

10% more power; for 12-lm insulation layers, 25% more

laser power was required. As Fig. 12 shows, when the sam-

ple thins at higher pressure, the radial temperature profile

becomes narrower. The effects of thinned insulation layers

on temperatures and hotspot shapes have also been observed

in models and measurements by Panero and Jeanloz24 and

Kavner and Panero.2 Note that the narrowing of the radial

temperature profile at higher pressure is due primarily to the

change in geometry rather than a pressure-induced change in

thermal conductivity. Our calculations show that if the ther-

mal conductivity of a sample is increased without changing

the sample thickness, the shape of the hotspot at a particular

peak temperature does not change (although more laser power

is needed to reach the same peak temperature). For a particu-

lar sample and laser geometry and peak temperature, the tem-

perature gradient is independent of the absolute value of the

sample thermal conductivity (although the temperature-

dependence of thermal conductivity does matter).

V. CONCLUSIONS

We have created and validated a full 3-D numerical

model, TempDAC, for calculating temperature distributions

within the LHDAC applicable to steady-state continuous

heating experiments. Several interesting properties of

LHDAC temperature distributions are illustrated by our

example calculations. Temperature gradients will exist in

both the axial and radial directions, with the particulars of

the temperature gradients depending on the experimental

geometry and the sample thermal conductivity. The

FIG. 11. Peak temperature for constant laser power as a function of single-

sided insulation layer thickness for an incompressible Pt foil heated within a

soft Ne insulating medium in the LHDAC. Slight deviations from a smooth

curve are due to the resolution limits of the mesh used in the numerical

model.

FIG. 12. Radial temperature profile at the surface of an incompressible Pt

foil heated within a soft Ne medium as a function of single-sided thickness

of the symmetric insulation layers: 20 lm (black line), 16 lm (blue line),

and 12 lm (red line).

FIG. 10. The plot on the left shows

calculated radial temperature profiles

at the surface of a Pt foil for the flat-

top (black line and symbols) and

Gaussian (blue line and symbols) laser

beams shown in Fig. 8. The plot on the

right shows the corresponding axial

temperature profiles through the center

of the sample.
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temperature distribution is strongly dependent on the experi-

mental geometry, with the sample thickness and the particu-

lar shape of the laser beam intensity profile both having

significant influences on the resulting temperature gradients.

The extreme temperature gradients that form within the sam-

ple during laser heating are three-dimensional, and the 3D

nature of the heat conduction must be taken into account

when making predictions regarding LHDAC temperature

gradients and when interpreting X-ray diffraction data that

have been obtained during laser heating.

The results of our models for some special cases of sam-

ple physical properties and sample and heating laser geome-

try suggest ways to enhance the design of high-pressure,

high-temperature laser heating experiments. For example,

our models support the idea of measuring hotspot ellipticity

as an indicator of anisotropy in heat flow properties; how-

ever, these experiments must be accompanied by models in

order to interpret results. Elliptical laser beams and aniso-

tropic thermal conductivity both result in elongated hotspots,

but the ellipticity of the hotspots is less than that of the laser

beam or the anisotropy of thermal conductivity due to axial

heat flow. The models also help guide priorities for sample

loading and experimental setup. Contrary to conventional

wisdom, our models show that asymmetrically thick insula-

tion layers do not necessarily result in significant differences

in peak temperatures on each side of a heated foil. Moreover,

a “flat-top” laser beam, while it can produce a shallow tem-

perature gradient near the center of the sample if the laser

spot size is large enough, does not produce a temperature

gradient that is flatter or more uniform than would be pro-

duced by a Gaussian beam profile of similar width.

Our model and the results presented here can be useful

tools in designing LHDAC experiments and interpreting

LHDAC temperature measurements. Our code will be made

freely available to anyone within the community who wishes

to use it.
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