天文学概論 第5回 星と惑星の形成

担当:黒川 宏之

スケジュール 1

- 名前:黒川 宏之
- 所属:東京工業大学地球生命研究所
- 連絡先:hiro.kurokawa@elsi.jp
- 専門:惑星の形成と進化の理論的研究
- 担当:星惑星形成(第5回),超新星・宇宙論(第11・12回)

レポート課題(黒川担当分)

「星と惑星の形成」(今日の講義) または 「宇宙誕生から現在までの歴史」(第11回) のどちらかについて 他人が読んでもわかりやすいように要点をまとめよ。 文章の他に、イラスト・図などを用いてもよい。 (A4レポート用紙1枚以内)

提出先:レポートボックス 提出期限:12/13(水)17時

星(恒星)とは?

- ガス(H, He)の巨大な塊
- ・内部で核融合反応
- ・自ら光り輝く
- ・重力とガス圧・放射圧の
 釣り合い
- ・等級:見かけの明るさ
 ⇔ 絶対等級:本来の明るさ
 ・星の色:表面温度

太陽の内部構造(理科年表サイトより)

惑星とは?

Our Solar System

・恒星の周りを回る
・球状をなす程度に重い
・その軌道近くに
他の天体がない
(衛星を除く)
・太陽系には8個の惑星

星形成の流れ

http://www.physicsoftheuniverse.com/topics_blackholes_stars.html

分子雲コアの形成

- 星間分子雲の一部が自身の重力で収縮し、分子雲コアを形成
- ·密度104-5個/cm3
- ・ 重力と圧力の釣り合い

原始星の形成

c) C. Burrows (STScl & ESA), the WFPC 2 Investigation Definition Team, and NASA

- · 中心部の密度 10¹¹ 個/cm³
- ・ 双極分子流が吹き出す
- ・原始星の周囲に原始星円盤が形成
- · 約10⁶ 年ガス降着が続き、質量が決まる

Tタウリ型星

・ 質量降着を終えた後、約10⁷年かけてゆっくりと収縮 ・ 周囲に星間ガスの名残

11

主系列星

原始星の収縮に伴い 内部温度上昇 中心温度 1.5×10⁷ K に達し、水素燃焼を 起こす主系列星に 太陽質量の恒星では 約100億年続く

https://www.rikanenpyo.jp/kaisetsu/tenmon/tenmon_009_2.html

・太陽程度の重さの星(小質量星)が100個程度形成

<u>オリオン座分子雲の電波強度マップ</u>

星からの紫外線で水素ガス電離 (HII領域) ガスの膨張によって星形成を誘発

http://www.uec.ac.jp/research/information/column/31/images/pct_02L.jpg

星形成の流れ

http://www.physicsoftheuniverse.com/topics_blackholes_stars.html

惑星形成の場:原始惑星系円盤

ESO-VLTプレスリリース記事より

原始星とともに誕生した星を取り巻く円盤が 惑星形成の舞台 → **原始惑星系円盤**と呼ぶ (太陽系の場合:原始太陽系円盤)

アルマ望遠鏡によるHL tauのミリ波観測 (アルマ望遠鏡プレスリリース記事より) ※実際には別の領域の天体

原始惑星系円盤の形成

http://www.yomiuri.co.jp/olympic/2010/feature/kagaku/ka20100219_01.htm

遠心力

ボロアナーション

原始惑星系円盤

微惑星の形成

微惑星~km

原始惑星~103 km

原始惑星の形成

木星型惑星形成

地球型惑星形成

2008年理論懇シンポジウム 玄田英典さん講演資料より http://rironkon.jp/sympo08/oral-files/genda.pdf

©Newton Press (改) Newton

原始惑星系円盤の組成・構造

組成:恒星と同じ。H, Heガスが主成分)、質量比1%程度のダスト(塵) 構造:太陽系の場合、惑星の質量と分布から推定

P. Armitage 『Astrophysics of Planet Formation』より

ダストの合体成長

ダスト(~0.1µm)が多数合体 微惑星(~数km)が形成

ただし、不明点が多い
・衝突による破壊?
・ガス抵抗で恒星へと落下?

微惑星の合体成長

23

微惑星の暴走成長の数値シミュレーション 日本評論社『太陽系と惑星』より

他の微惑星より大きい微惑星は より早く成長(合体)していく

原始惑星の形成

原始惑星の寡占的成長の数値シミュレーション 日本評論社『太陽系と惑星』より

寡占的成長

暴走的成長が進行すると、 惑星は自分の縄張り(ヒル半径の約10倍) の中の微惑星を食い尽くして成長が止まる

恒星からの距離	孤立質量 [地球質量]
地球 (1AU)	0.09
木星 (5AU)	1.7
海王星 (30AU)	6.5

24

巨大衝突

巨大衝突の数値シミュレーション

- 孤立質量に達した原始惑星どうしが
 長い時間(~10⁷年)をかけて軌道交差
- ・火星質量の天体が複数衝突合体し、
 地球や金星を形成
- ・地球の月の起源

25

・火星や水星は原始惑星の生き残り?

月の形成(動画)

http://4d2u.nao.ac.jp/t/var/download/Moon.html

巨大ガス惑星の形成

http://science.nationalgeographic.com/science/enlarge/planet-formation.html

<u>円盤ガスの捕獲</u>

・惑星が十分に成長すると、重力によって
 ・円盤ガスを捕獲した大気をまとい始める
 ・木星軌道だと、地球質量の0.01倍

暴走的円盤ガス捕獲

原始惑星が10地球質量を超えると 捕獲した円盤ガスの自己重力によって 暴走的なガス捕獲が起こる

周惑星円盤での衛星形成

Tanigawa et al. (2012) https://www.cps-jp.org/~mosir/pub/2012/2012-08-22/01_tanigawa/pub-web/01_tanigawa.pdf

- 巨大ガス惑星の周りに周惑星円盤が形成
- ・規則衛星の形成

Solar System Planets

ボタードのため、

原始惑星系円盤

ダスト(塵) ~ μm

微惑星~km

原始惑星~103 km

原始惑星の形成

木星型惑星形成

The state of the

30

地球型惑星形成

2008年理論懇シンポジウム 玄田英典さん講演資料より http://rironkon.jp/sympo08/oral-files/genda.pdf

©Newton Press (改) Newton

<u>巨大ガス惑星が原始惑星系円盤密度分布に及ぼす影響</u>

http://jilawww.colorado.edu/~pja/planet_migration.html

ある程度成長した惑星は、円盤ガスとの重力相互作用によって内側へ移動 恒星のごく近傍をまわる系外惑星の形成過程

<u>太陽系巨大ガス惑星の惑星移動(Grand Tack モデル)</u>

http://www.boulder.swri.edu/~kwalsh/GrandTack.html

太陽系においても惑星移動が起きた可能性が提案されている

まとめ

<u>星形成</u>

質量降着:星間分子雲 → 分子雲コア → 原始星 (10⁶年) 重力収縮: Tタウリ星 (10⁷年) 核融合:主系列星 (100億年)

惑星形成

原始惑星系円盤:原始星の形成に伴って形成 ダストから微惑星:付着合体成長? 微惑星から原始惑星:暴走的成長、寡占的成長 原始惑星から惑星:巨大衝突、巨大ガス惑星の暴走的円盤ガス捕獲

参考文献

シリーズ現代の天文学9 『太陽系と惑星』日本評論社

スケジュール 1

スケジュール 2

11/22 天体観測 (大宮)
11/29 超新星・宇宙論(1)(黒川)
12/6 超新星・宇宙論(2)(黒川)
12/13 初期宇宙と構造形成(1)(林)
12/20 初期宇宙と構造形成(2)(林)
1/10 全体のまとめ (大宮)