

東京工業大学 地球生命研究所 hiro.kurokawa@elsi.jp

黒川 宏之

● 黒川 宏之 (くろかわ ひろゆき)

- 東京工業大学 地球生命研究所
- 専門:"惑星の形成と進化"の理論研究,太陽系探査
- 連絡先: hiro.kurokawa@elsi.jp

Credit: JAXA

● 講義時間外の質問はメール、クラスウェブのディスカッション機能へ

地球質量 $M_{\oplus} = 5.97 \times 10^{24}$ kg, 地球半径 6.371×10^{6} m

	質量 [M _⊕]	半径 [<i>R</i> ⊕]	密度[10 ³ kg m ⁻³]
水星	0.055	0.38	5.43
金星	0.815	0.95	5.20
地球	1	1	5.52
火星	0.107	0.53	3.93
木星	317.89	10.97	1.33
土星	95.18	9.14	0.688
天王星	14.54	3.98	1.27
海王星	17.15	3.86	1.64

岩石惑星 (地球型惑星) (cf. 0気圧の岩石 ~ 3 × 10³ kg m⁻³) 巨大ガス惑星 巨大氷惑星 (cf. 水 ~ 1 × 10³ kg m⁻³)

マグマオーシャン 有機物ヘイズ? スノーボールアース 現在の地球

地球は歴史を通じてその姿を変えてきた

大気組成・気候・水量・大陸地殻…

→ 時間

・岩石の地殻 + マントル:67.5 wt.%,金属鉄のコア(外核 + 内核):32.5 wt.%
・大気:海洋:固体地球 = 8×10⁻⁶: レポート課題:1
→ 大気・海洋は惑星の"薄皮"であり,固体地球の影響を強く受ける

← 外核(液体の金属鉄)

← 内核(固体の金属鉄)

- 大気-海洋-地殻系での炭素循環タイムスケール ~ 10⁶⁻⁷ 年

地球表層と内部の物質循環

門屋他 (2012) 日本惑星科学会誌, Vol. 21, No. 3.

● 海洋プレート上の鉱物に取り込まれて水(-OH),炭素(-CO₃),窒素(NH₄+-)がマントルへ還流

太陽の活動と進化

Image credit:東京大学宇宙線研究所神岡宇宙素粒子研究施設

- 太陽放射と太陽風は惑星の環境に大きな影響を及ぼす
- 太陽も進化する

Image credit: NASA

核融合反応 $(4^{1}H \rightarrow 4^{4}He + 2e^{+} + 2\nu) \rightarrow$ 密度上昇 → 自重を支えるために光度が上昇 太陽風 → 自転角速度低下 → 極端紫外線・X線光度低下,太陽風フラックス低下

暗い太陽のパラドックス

40億年前の太陽光度は現在の 70% しかない → 現在と同じ大気組成を仮定した場合,20億年以上前の地球は凍りついてしまう 9 (y) ↔ 海が存在した地質学的証拠と矛盾 (Segan & Muller 1972, Science)

Carl Segan

	水星	金星	地球	火星
軌道半径 [au]	0.4	0.7	1	1.5
地表面気圧 [気圧]		90	1	0.006
大気主成分		CO ₂ (>95%)	N_2, O_2	CO _{2 (>95%)}
地表平均気温 [K]	440	740	288	210
表層水量 [地球=1]		10-5(水蒸気)	1 (液体の水)	10-3 (氷)

Werner & Ivanov (2015) in Treatise on Geophysics 2nd Edition

探査機ベネラ13号が撮影した金星の地表

- 高温 (大気の温室効果), 乾燥
- 濃硫酸の雲に覆われている
- ホスフィン (PH₃) の発見が報告されて (反論もある) 生命の存在可能性について議論 (e.g., Greaves et al. 2020)
- プレート・テクトニクスがない
 - 一様なクレーター分布 (表面年代)
 - 大陸・海洋地殻の標高の二分性の欠如

<u>火星探査車 Curiosity の自撮り風画像</u>

- 低温, 乾燥 (※ 極域には氷)
- 全球に分布するダストが気候にも影響 (太陽光の吸収,砂嵐)

極冠の氷

●頻繁に探査が行われてきたので、惑星の中では地球の次くらいには情報がある

Di Achille & Hynek (2010) Nature

火星の流水地形

Williams et al. (2013) Science

500 n

津松阪港

火星の三角州地形の分布

約40億年前?

<u>現在</u>

探査機MAVENによる火星の散逸大気観測 (credit: Univ. Corlado, NASA)

- 大気を持たない

地球型惑星の内部構造の模式図

● 巨大なコアを持つ(質量の ~ 60 - 70% ↔ 地球 33%) • ダイナモ磁場を持つ (地球型惑星では地球と水星のみ)

 ● 質量の大部分 (~ 70 – 90%) が水素・ヘリウム ● 高圧(>100万気圧)の内部では水素が金属化 (自由電子を持つ) → ダイナモ磁場

Image credit: NASA/LPI

高圧氷層

Image credit: NASA/LPI

• 高圧氷層:導電性のあるスーパーアイオニック層(自由電子的に水素イオンが振る舞う)

※2020年5月時点

◎アポロ 12, 14-16 の 着陸地点に設置された地震計ネットワーク (~1977) ●小さいコア 170-360 km (Nakamura et al. 1974) → 巨大衝突の破片からの形成

月の地震計ネットワーク Lognonné & Johnson (2015)

土星の衛星タイタン

- 大気:約1.5気圧 N₂ + 数%のCH₄
- ・光化学によるヘイズ(高分子有機物粒子) ← 太古代地球的?
- 液体 CH4, C2H6の湖
- 内部には液体 H₂Oの層 (大型氷衛星に共通の性質)

内部海

水氷層

高圧氷層

含水鉱物 or 氷+無水岩石?

Image credit: NASA

上星の衛星エンセラダス

化学同人社『アストロバイオロジー』

→ 小惑星が地球に水をもたらした?

さまざまな小惑星タイプの混在

・サンプル初期分析が進行中

はやぶさ2による小惑星リュウグウ探査

• 2019年にサンプル採取に成功 → 2020年末に帰還

• 天体衝突破片からできた?捕獲された小惑星? JAXAの火星衛星探査計画 MMX (2024年打上予定)

デイモス:~I0 km

フォボス:~20 km

太陽系

◎ 惑星:岩石惑星、巨大ガス惑星、巨大氷惑星、表層環境の変遷 ●太陽の進化:光度の増加、極端紫外線・太陽風フラックスの減少 → 惑星に影響 衛星:巨大衝突や小惑星の捕獲による形成、氷衛星の生命存在可能性 ◎ 小天体:惑星形成過程の名残,揮発性物質(海,大気,生命の材料)の起源

まとめ

地球の表面は7割が海に覆われており、その平均深さは約 4kmである、海水の総質量をkgの単位で求めよ、また地球総 質量に占める海水の割合を求めよ(答えは有効数字1桁の精度 とする) 地球の質量・半径、水の密度は講義資料中の値を用 いてよい

小レポート課題(4/1517時締切)