Publications

Submitted papers

  1. Li, Y., Kurokawa, H., Sekine, Y., Kebukawa, Y., Nakano, Y., Kitadai, N., Zhang, N., Zang, X., Ueno, Y., Nakamura, R., Fujishima, K., and Isa, J.
    Aqueous breakdown of aspartate and glutamate to n-ω-amino acids: a new insight into the parent body processes of carbonaceous chondrites and asteroid Ryugu.

  2. Aoki, S., Shiobara, K., Yoshida, N., Trompet, L., Yoshida, T., Terada, N., Nakagawa, H., Liuzzi, G., Vandaele, A. C., Thomas, I. R., Villanueva, G. L., Lopez-Valverde, M. A., Brines, A., Patel, M. R., Faggi, S., Daerden, F., Erwin, J. T., Ristic, B., Bellucci, G., Lopez-Moreno, J. J., Kurokawa, H., and Ueno, Y.
    Strong depletion of 13C in CO in the atmosphere of Mars revealed by ExoMars-TGO/NOMAD.

  3. Tan, S., Sekine, Y., Kuzuhara, M., Kurokawa, H., Hama, T., Dalle Ore, C. M., and Cruikshank, D. P.
    The optical constants of NaCl irradiated by 10-keV electrons and spectral model fitting of reflectance spectra of Europa.

  4. Ueno, Y., Schmidt, J. A., Johnson, M. S., Zang, X., Gilbert, A., Kurokawa, H., and Usui, T.
    New photochemical mechanism via CO explains 13C anomaly in Martian organic material.

Accepted/Published papers

  1. Takaoka, K., Kuwahara, A., Ida, S, and Kurokawa, H.
    Spin of protoplanets generated by pebble accretion: Influences of protoplanet-induced gas flow.
    Accepted to be published in Astronomy and Astrophysics. [arXiv]

  2. Imamura, S., Sekine, Y., Maekawa Y., Kurokawa, H., and Sasaki, T. (2023),
    Effective formation of surface flow due to salt precipitation within soils upon repeated brine seepages on Mars.
    Icarus, 396, Article No. 115500. [Icarus]

  3. Li, Y., Kitadai, N., Sekine, Y., Kurokawa, H., Nakano, Y., and Johnson-Finn, K. (2022),
    Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies.
    Nature Communications, 13, Article No. 4893. [Nat. Comm.]

  4. Kuwahara, A., Kurokawa, H., Tanigawa, T., and Ida, S. (2022),
    Dust ring and gap formation by gas flow induced by low-mass planets embedded in protoplanetary disks: I. Steady-state model.
    Astronomy and Astrophysics, 665, A122. [A&A][arXiv]

  5. I-MIM MDT (including Kurokawa, H.) (2022),
    Final Report of the International Mars Ice Mapper Reconnaissance/Science Measurement Definition Team.
    239 pp., posted online.

  6. Kurokawa, H., Laneuville, M., Li, Y., Zhang, N., Fujii, Y., Sakuraba, H., Houser, C., and Cleaves, H. J. (2022),
    The origin of Earth's mantle nitrogen: primordial or early biogeochemical cycling?
    Geochemistry, Geophysics, Geosystems, 23, e2021GC010295. [G3][arXiv]

  7. Kurokawa, H., Shibuya, T., Sekine, Y., Ehlmann, B. L., Usui, F., Kikuchi, S., and Yoda, M. (2022),
    Distant formation and differentiation of outer main belt asteroids and carbonaceous chondrite parent bodies.
    AGU Advances, 3, e2021AV000568. [AGU Advances][arXiv]

  8. Kurokawa, H., Kuroda, T., Aoki, S., and Nakagawa, H. (2022),
    Can we constrain the origin of Mars’ recurring slope lineae using atmospheric observations?
    Icarus, 371, 114688. [Icarus] [arXiv]

  9. Barucci, M. A., ..., Kurokawa, H., et al. (2021),
    MIRS: an imaging spectrometer for the MMX mission.
    Earth, Planets and Space 73, 211. [EPS]

  10. Sakuraba, H., Kurokawa, H., Genda, H., and Ohta, K. (2021),
    Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion.
    Scientific Reports 11, 20894. [Scientific Reports]

  11. Kurokawa, H., Miura, Y. N., Sugita, S., Cho, Y., Leblanc, F., Terada, N., and Nakagawa, H. (2021),
    Mars' atmospheric neon suggests volatile-rich primitive mantle.
    Icarus, 370, 114685. [Icarus] [arXiv]

  12. Kurokawa, H. (2021),
    Hydrated crust stores Mars' missing water.
    Science, Vol. 372, Issue 6537, pp. 27-28. [Science]

  13. Kurokawa, H., Ehlmann, B. L., De Sanctis, M. C., Lapôtre, M. G. A., Usui, T., Stein, N. T., Prettyman, T. H., Raponi, A., and Ciarniello, M. (2020),
    A probabilistic approach to determination of Ceres' average surface composition from Dawn Visible‐Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector data.
    Journal of Geophysical Research: Planets, 125, e2020JE006606. [JGR:Planets][arXiv]

  14. Kuwahara, A. and Kurokawa, H. (2020),
    Influences of protoplanet-induced three-dimensional gas flow on pebble accretion – II. Headwind regime.
    Astronomy and Astrophysics, 643, A21. [A&A][arXiv]

  15. Lammer, H., Scherf, M., Kurokawa, H., Ueno, Y., Burger, C., Maindl, T., Johnstone, C., Leizinger, M., Benedikt, M., Fossati, L., Kislyakova, K. G., Marty, B., Avice, G., Fegley, B., and Odert, P. (2020),
    Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early Venus, Earth and Mars,
    Space Science Reviews, 216, Article No. 74. [SSR]

  16. Kuwahara, A. and Kurokawa, H. (2020),
    Influences of protoplanet-induced three-dimensional gas flow on pebble accretion – I. Shear regime,
    Astronomy and Astrophysics, 633, A81. [A&A][arXiv]

  17. 黒川 宏之 (2019),
    惑星系の形成と進化 (日本惑星科学会2018年度最優秀研究者賞受賞記念論文),
    遊星人, 28(4), 266-276. [遊星人]

  18. Kuwahara, A., Kurokawa, H., and Ida, S. (2019),
    Gas flow around a planet embedded in a protoplanetary disc: the dependence on the planetary mass,
    Astronomy and Astrophysics, 623, A179. [A&A][arXiv]

  19. Sakuraba, H., Kurokawa, H., and Genda, H. (2019),
    Impact degassing and atmospheric erosion on Venus, Earth, and Mars during the late accretion,
    Icarus, Volume 317, 48-58. [Icarus][arXiv]

  20. 黒川 宏之, 櫻庭 遥 (2018),
    火星大気と表層水の起源と進化:理論モデルと同位体組成からの制約,
    遊星人, 27(3), 127-137. [遊星人]

  21. Kurokawa, H., Foriel, J., Laneuville, M., Houser, C., and Usui, T. (2018),
    Subduction and atmospheric escape of Earth's seawater constrained by hydrogen isotopes,
    Earth and Planetary Science Letters, Volume 497, 149-160. [EPSL][arXiv]

  22. Kurokawa, H. and Tanigawa, T. (2018),
    Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier,
    Monthly Notices of the Royal Astronomical Society, Volume 479, 635-648. [MNRAS][arXiv]

  23. Kurokawa, H., Kurosawa, K., and Usui, T. (2018),
    A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions,
    Icarus, Volume 299, 443-459. [Icarus][arXiv]

  24. Kurokawa, H., Usui, T., and Sato, M. (2016),
    Interactive evolution of multiple water-ice reservoirs on Mars: insights from hydrogen isotope compositions,
    Geochemical Journal, Volume 50 (No. 1), 67-79. [Geohem. J.][arXiv]

  25. Kurokawa, H. and Inutsuka, S. (2015),
    On the radius anomaly of hot Jupiters: reexamination of the possibility and impact of layered convection,
    The Astrophysical Journal, Volume 815, ID: 78. [ApJ][arXiv]

  26. Kurokawa, H., Sato, M., Ushioda, M., Matsuyama, T., Moriwaki, R., Dohm, J. M., and Usui, T. (2014),
    Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites,
    Earth and Planetary Science Letters, Volume 394, 179-185. [EPSL][arXiv]

  27. Kurokawa, H. and Nakamoto, T. (2014),
    Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population,
    The Astrophysical Journal, Volume 783, ID: 54. [ApJ][arXiv]

  28. Kurokawa, H. and Kaltenegger, L. (2013),
    Atmospheric mass loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b,
    Monthly Notices of the Royal Astronomical Society, Volume 433, Issue 4, 3239-3245. [MNRAS][arXiv]

  29. Kurokawa, H. and Nakamoto, T. (2012),
    Effects of atmospheric absorption of incoming radiation on radiation limit of the troposphere,
    Journal of the Atmospheric Sciences, 69, 403-413. [JAtS]