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Abstract. An amoeboid organism, Physarum, exhibits rich spatiotem-
poral oscillatory behavior and various computational capabilities. Previ-
ously, the authors created a recurrent neurocomputer incorporating the
amoeba as a computing substrate to solve optimization problems. In this
paper, considering the amoeba to be a network of oscillators coupled such
that they compete for constant amounts of resources, we present a model
of the amoeba-based neurocomputer. The model generates a number of
oscillation modes and produces not only simple behavior to stabilize a
single mode but also complex behavior to spontaneously switch among
different modes, which reproduces well the experimentally observed be-
havior of the amoeba. To explore the significance of the complex behav-
ior, we set a test problem used to compare computational performances
of the oscillation modes. The problem is a kind of optimization problem
of how to allocate a limited amount of resource to oscillators such that
conflicts among them can be minimized. We show that the complex be-
havior enables to attain a wider variety of solutions to the problem and
produces better performances compared with the simple behavior.
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1 Introduction

A single-celled amoeboid organism, the true slime mold Physarum polycephalum
(Fig. 1A), has been studied actively in recent years to explore and exploit its
notable computational capabilities. Nakagaki and co-workers showed that the
amoeba is capable of searching for optimal paths between foods [1,2,3] and an-
ticipating periodic events [4].

In the amoeba’s body, a constant amount of intracellular protoplasmic sol
flows through tubular channels in a shuttle-wise manner, as its extracellular
gel layer like a sponge (ectoplasm) oscillates the contraction tension rhythmi-
cally to squeeze and absorb the sol (Fig. 1B). To observe the dependences of the
amoeba’s spatiotemporal oscillation modes on geometric constraints, Takamatsu
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Fig. 1. (A) An individual Physarum amoeba in an Au-coated plastic chamber on an
agar plate (scale bar = 7 mm). The amoeba acts only inside the chamber due to its
aversion to Au. In the absence of light stimulation, the spherically shaped amoeba (top)
flattened to elongate its three branches (bottom) by keeping its total volume almost
constant. (B) The amoeba’s body architecture. (C) Schematic diagram of the model
in which the volumes of the amoeba’s branches (nodes) are stationary. (D) Schematic
diagram of the model that takes into account the growth/degeneration of the branches.
Due to inhibitory feedback, branch 2 is stressed by light s2 ! 1 (dotted rectangle) as
branches 1 and 3 grow beyond the critical level Lθ (broken lines).

and co-workers placed the amoeba in a chamber patterned as a ring network with
several nodes [5,6]. The amoeba’s body part in each node is regarded as an os-
cillator because its vertical thickness oscillates. In a two-oscillator chamber, the
amoeba showed antiphase synchronization. Circularly coupled three oscillators
exhibited rotation modes, partial in-phase and partial antiphase synchronization
modes. Interestingly, after maintaining each of these modes for several periods,
the amoeba spontaneously switched among different modes even though no ex-
ternal perturbation was applied [7].

The amoeba shows a photoavoidance response to degenerate its branches when
illuminated by light. Introducing optical feedback applied according to a recur-
rent neural network model, Aono and co-workers created a neurocomputer em-
ploying the amoeba as a solution searcher of optimization problems [8,9,10,11].
In previous works [12,13], the amoeba’s branches were induced to grow or de-
generate in a network-patterned chamber in search of an optimal solution to the
Traveling Salesman Problem (TSP). It was shown that the system was capable
of reaching the optimal solution of the four-city TSP with a high probability.

In the solution-searching processes, the amoeba showed various oscillation
modes and spontaneous switching among them. Depending on the oscillation
modes, the performances in finding the solution seemed to vary. This dependence,
however, could not be verified experimentally because it is hard to control the
amoeba’s oscillation mode. Thus, we create a model that produces different
oscillation modes by changing parameters. Setting a problem derived from TSP,
we explore the relationships between the oscillation modes and performances.



58 M. Aono et al.

2 Models

2.1 Resource-Competing Oscillator Network

We model the amoeba as a network of oscillators coupled such that the sums
of their variables are kept constant while resources are exchanged competitively.
Consider a graph G(Q, E) with a set of nodes Q and a set of edges E, where Q
contains M nodes. Let vq(t) ∈ R and xq(t) ∈ R be a volume of node q and its
rate of change, respectively. That is,

v̇q = xq. (1)

We define the dynamics of xq in accordance with Kirchhoff’s current law. Namely,
the increment of xq is supplied as the sum of resources flown from its coupled
nodes:

ẋq =
∑

p∈Pq

Ip,q, (2)

where Ip,q is a current of resource flowing from node p to q, and Pq is a set of
all nodes connected to node q. Owing to the symmetry in currents Ip,q = −Iq,p,
the sum of all increments for x vanishes:

∑
q∈Q ẋq =

∑
(p,q)∈E Ip,q + Iq,p = 0.

This property keeps
∑

q∈Q xq constant. Thus, if we set the initial states xq(0)
such that

∑
q∈Q xq(0) = 0, the sum of the volumes

∑
q∈Q vq is conserved. This

corresponds to a condition that a constant amount of protoplasmic sol flowing
inside the amoeba is shared by a number of branches.

Each node q has its own intranode dynamics defined as the following two-
variable oscillator to generate a regular rotation on a x-y plane R × R:

ẋ∗
q = f(rq xq − yq − xq(x2

q + y2
q)), (3)

ẏ∗
q = f(xq + rq yq − yq(x2

q + y2
q)), (4)

where f adjusts a frequency, and rq sets an amplitude (radius) to be √
rq . This

oscillator produces stable limit-cycle and was taken from a standard form of
super-critical Hopf bifurcation [14]. The variables x and y might be considered
as representing the concentrations of activator and inhibitor in a reduced model
of the amoeba’s intracellular biochemical oscillation, respectively. However, this
oscillator would be insufficient to give a physiologically valid model. We chose
the oscillator just because it simply produces a pure rotation that allows us to
concentrate on complex behavior generated by coupling the simple dynamics.

To determine currents Ip,q in Eq. (2), each node q requires that the actual
volume change ẋq becomes closer to the expected demand ẋ∗

q of the intranode
dynamics Eq. (3). Additionally, currents Ip,q are required to flow from smaller-
incremented to larger-incremented nodes to represent the competitive internode
relationships in the amoeba (Fig. 1B). That is, the protoplasmic sol flows from a
contracting (squeezing) site to a relaxing (absorbing) site of the sponge-like gel
layer so that the pressure difference between the two sites is widened further. To
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balance these intranode and internode requirements, currents Ip,q are determined
to minimize the following object function HI :

HI = λ
∑

q∈Q

(ẋ∗
q −

∑

p∈Pq

Ip,q)
2

+ (1 − λ)
∑

(p,q)∈E

(Wp,q(ẋ∗
q − ẋ∗

p) − Ip,q)
2
, (5)

where λ ∈ (0.0, 1.0) is a control parameter, and Wp,q is the coupling strength1 be-
tween nodes p and q. When minimizing the first and second terms, the intranode
and internode requirements are met maximally, respectively.

The dynamics and object function of the variable yq are given as well as xq:

ẏq =
∑

p∈Pq

Jp,q, (6)

HJ = λ
∑

q∈Q

(ẏ∗
q − gq −

∑

p∈Pq

Jp,q)
2

+ (1 − λ)
∑

(p,q)∈E

(Wp,q(ẏ∗
q − ẏ∗

p) − Jp,q)
2
, (7)

where Jp,q is also a current of resource, and gq(t) ∈ R is a variable to regulate
the growth of the volume vq, which will be explained later.

In this paper, we consider a four-node star network shown in Fig. 1C, where
Q = {0, 1, 2, 3}, E = {(0, 1), (0, 2), (0, 3)}, λ = 0.2, and all coupling strengths
are uniformly set as Wp,q = 1. Because the object functions HI and HJ are
quadratic, unique solutions for optimal currents Ip,q and Jp,q can be obtained
analytically. Indeed, simultaneously solving equations ∂HI

∂I0,1
= 0, ∂HI

∂I0,2
= 0, and

∂HI
∂I0,3

= 0, we get the optimal currents I0,1, I0,2, and I0,3 as follows:

I0,1/2/3 = 1
1+3λ

(
W0,1/2/3(ẋ∗

1/2/3 − ẋ∗
0)

−λ2
(
−2ẋ∗

1/2/3 + ẋ∗
2/1/2 + ẋ∗

3/3/1 − 2W0,1/2/3(ẋ∗
1/2/3 − ẋ∗

0)
− W0,2/1/2(ẋ∗

2/1/2 − ẋ∗
0) − W0,3/3/1(ẋ∗

3/3/1 − ẋ∗
0)

)

+λ
(
(1 + W0,1/2/3)(ẋ∗

1/2/3 − ẋ∗
0) − W0,2/1/2(ẋ∗

2/1/2 − ẋ∗
0)

− W0,3/3/1(ẋ∗
3/3/1 − ẋ∗

0)
))

,

(8)

where the subscript expression “1/2/3” indicates that three equations are col-
lectively written. Similarly, we obtain the optimal currents J0,1, J0,2, and J0,3:

J0,1/2/3 = 1
1+3λ

(
W0,1/2/3(ẏ∗

1/2/3 − ẏ∗
0)

−λ2
(
−2g1/2/3 + g2/1/2 + g3/3/1 + 2ẏ∗

1/2/3 − ẏ∗
2/1/2 − ẏ∗

3/3/1

− 2W0,1/2/3(ẏ∗
1/2/3 − ẏ∗

0) + W0,2/1/2(ẏ∗
2/1/2 − ẏ∗

0)
+ W0,3/3/1(ẏ∗

3/3/1 − ẏ∗
0)

)

+λ
(
g0 − g1/2/3 + (1 + W0,1/2/3)(ẏ∗

1/2/3 − ẏ∗
0)

− W0,2/1/2(ẏ∗
2/1/2 − ẏ∗

0) − W0,3/3/1(ẏ∗
3/3/1 − ẏ∗

0)
))

.

(9)

Substituting Eqs. (8), (9), (3), and (4) into Eqs. (2) and (6), the dynamics ẋq

and ẏq are given as ordinary differential equations and can be solved numerically.
1 It is possible to model the asymmetry in the influx and efflux of the resource current

from node p to q. Indeed, replacing Wp,q with a sigmoid function (Wp,q − ε)+ ε/(1+
Exp{−κ(ẋ∗

q − ẋ∗
p)}), the influx and efflux become uneven when ε > 0 or ε < 0.
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2.2 Oscillation Modes

In this section, we fix all growth variables to be vanished as gq(t) = 0 so that
the amoeba’s branch in each node never elongates nor withdraws (Fig. 1C). We
introduce a parameter ρ to adjust the amplitude of the hub node 0 as √r0 = 3ρ,
while that of the other terminal nodes are

√
r1 =

√
r2 =

√
r3 = 3. Depending

on the hub’s amplitude adjusted by ρ, the model produces different oscillation
modes. In this study, we focus on six distinctive modes shown in Fig. 2, where
for each mode we appropriately choose f to equalize the frequencies of all modes.

– Mode 1: In-phase synchronization. All terminal nodes 1, 2, and 3 syn-
chronize in in-phase, but they synchronize with the hub node 0 in antiphase.

– Mode 2: Partial in-phase synchronization A. Two terminal nodes syn-
chronize in in-phase, where the phases of these terminals are about 90◦ ahead
of the other isolated terminal and are about 135◦ behind the hub. Because
each of three terminals can be isolated, this mode gives three variations
depending on initial states.

– Mode 3: Partial in-phase synchronization B. Two terminals perform
in-phase synchronization, where the phases of these terminals are about 120◦

ahead of the other isolated terminal and are about 120◦ behind the hub. This
mode also has three variations and is initial-state dependent.

– Mode 4: Spontaneous mode switching. The terminals spontaneously
switch among three variations of the mode 3, as node 1, 3, and 2 are isolated
cyclically in that order. Although each mode switches once every three peri-
ods, this behavior is not exactly periodic and produces a number of variations
depending on initial states. The behavior is understood as complex quasi-
periodic motion that appears to involve irregular fluctuations like chaotic
behavior. We have also observed similar switching behavior in a model of
a ring network of nonuniformly-coupled three oscillators and confirmed its
mechanism to be the saddle node bifurcation. The chaos-like behavior was
not strictly chaos, as the dynamics did not show the exponential divergence
of neighboring points in the orbits. We will report these results elsewhere [15].

– Mode 5: Long-term behavior. Because the hub oscillates with the same
amplitude as the terminals, the hub does not have enough capacity to absorb
and emit the sum of resources flowing from the terminals within a single
period. This leads the hub to oscillate 3/2 times as fast as the terminals and
to have a large-scale trend varied in a long-term cycle, which requires 21
periods of oscillations. This mode also exhibits a number of variations.

– Mode 6: Rotation. Because the amplitude of the hub is much smaller than
that of the terminals, the hub has only a small effect on resource traffic. The
phase of each terminal differs equally about 120◦ from that of neighboring
ones. That is, each terminal in turn transfers resources to its adjacent termi-
nal in a manner similar to a unidirectional rotation movement. This mode
has another variation to rotate in opposite direction.

The amoeba exhibited all these modes in experiments, but each mode continued
for at most 10 periods and spontaneously switched to other modes, as reported
in [7]. In this sense, the amoeba’s behavior is best described by the mode 4.
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Fig. 2. Time series of six oscillation modes at (µ, δ) = (0, 0) with initial states randomly
chosen from xq ∈ [−3.0, 3.0] such that

∑
q∈Q xq = 0, where yq = 0 and vq = 15. The

thickest solid, second-thickest solid, dashed, and dotted lines correspond to the nodes 0,
1, 2, and 3, respectively. (A) In-phase synchronization at (ρ, f) = (3, 0.456). (B) Partial
in-phase synchronization A at (ρ, f) = (2.5, 0.529). (C) Partial in-phase synchroniza-
tion B at (ρ, f) = (2, 0.628). (D) Spontaneous mode switching at (ρ, f) = (1.5, 0.746).
(E) Long-term behavior at (ρ, f) = (1, 1). (F) Rotation at (ρ, f) = (0.1, 1.139).

2.3 Growth and Degeneration of Branch

In our model depicted in Fig. 1D, the volume of each node vq can be led to in-
crease and decrease by setting the growth variable gq to be positive and negative,
respectively. Indeed, suppressing the increment of yq by a positive gq in Eq. (7),
the increment of xq is enhanced, and thus vq grows. When xq and yq are consid-
ered to be the activator and inhibitor respectively, the effect of the positive gq is
taken as a process that the decrease of inhibitor yields the increase of activator.

The growth variable gq gives the amoeba a force for pushing and pulling its
branch, as it serves in a way comparable to the acceleration of the volume in
Eq. (7). Assuming the sum of the amoeba’s internally generated forces to be
constant, we define gq in a way similar to the Kirchhoff’s laws Eqs. (2) and (6):

gq =
∑

p∈Pq

Kp,q, (10)
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where Kp,q is called a force transmission from node p to q. As well as previously
defined currents, transmissions Kp,q are determined by minimizing the following
object function HK which balances intranode and internode requirements:

HK =
∑

q∈Q

(µ sq v̂q −
∑

p∈Pq

Kp,q)
2
+

∑

(p,q)∈E

(δ Wp,q(v̂p − v̂q) − Kp,q)
2, (11)

where v̂q = vq/L is a fraction of volume divided by the reference volume L =
40. The first term of HK models the effect of intranode inhibitory stimulation
adjusted by µ ≤ 0 to reduce the volume when stimulated by light. In the next
section, we will describe how to determine the stimulation signal sq, which is
a sort of on-off signal for indicating whether each node is illuminated (sq & 1)
or not (sq & 0). The second term represents the effect of internode diffusion
regulated by the parameter δ, which is a diffusion coefficient for tuning the
reduction rate of the differences among the volumes of the nodes.

Solving ∂HK
∂K0,1

= 0, ∂HK
∂K0,2

= 0, and ∂HK
∂K0,3

= 0, the optimal transmissions Kp,q

can be obtained analytically as follows:

K0,1/2/3 = 1
10L

(
−µ

(
2s0v0 − 4s1/2/3v1/2/3 + s2/1/2v2/1/2 + s3/3/1v3/3/1)

+ δ
(
−4W0,1/2/3(v1/2/3 − v0) + W0,2/1/2(v2/1/2 − v0)
+ W0,3/3/1(v3/3/1 − v0)

))
.

(12)

There are dynamics v̇q, ẋq, and ẏq given by Eqs. (1), (2), and (6), and we can
rewrite these dynamics as ordinary differential equations by substituting analytic
solutions of Ip,q, Jp,q, Kp,q obtained as Eqs. (8), (9), and (12). Thus, numerical
solutions for vq, xq, and yq are obtained by routine procedures. This means that
we can also calculate time series of Ip,q, Jp,q, Kp,q, and gq.

Fig. 3 gives examples of the time series showing how the growth variable gq

works. In comparison with Fig. 3A showing a control condition gq(t) = 0, it

Fig. 3. Time series of the mode 3 at (L, θ) = (40, 0.35) with initial volumes v0 = 30
and v1 = v2 = v3 = 10. In v-panels, broken lines show the critical level Lθ = 14. (A) No
growth at (µ, δ) = (0, 0). (B) Volume diffusion at (µ, δ) = (0, 20). (C) Problem-solving
process at (µ, δ) = (−200, 20). bT , pA, and b3+ are explained in Fig. 4.
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is confirmed in Fig. 3B that a large volume of the amoeba placed initially in
the hub diffused into the terminal nodes as g0(t) < 0, while the branches in
the terminals grew as g1(t), g2(t), g3(t) > 0. For all modes, the positive diffusion
coefficient δ > 0 brings about an effect to equalize the volumes of all nodes to
oscillate around

∑
q∈Q vq(0)/M eventually.

2.4 Stress Minimization Problem in Volume Allocation

In previous works, the authors showed experimentally that the amoeba is useful
for searching for solutions to the N -city TSP (N = 4 in [12,13]) in adopting the
following discrete-time-state modified Hopfield-Tank model [16] to update sq.

sq(t + ∆t) = 1 − Stp(
∑

p∈Q

Up,q sgm(ṽp(t))), (13)

where sq = 1 if the light is on; otherwise 0, ṽq is an area2 of the amoeba’s
branch in terminal node q, sgm(ṽ) = 1/(1 + Exp{−b(ṽ − θ)}), and Stp(V ) = 0
if V < Θ; otherwise 1. Each terminal node q ∈ Q is coupled with every node
(c, n) ∈ Q = {c1, c2, · · · , cN} × {1, 2, · · · , N} labeled with a city name c and its
visit order n as

U(c,n),q =






−α (if q = (c, n′ '= n) or q = (c′ '= c, n) ),
−β dst(c, c′) (if q = (c′ '= c, n′ '= n) and |n − n′| = 1 ),
0 (otherwise),

(14)

where dst(c, c′) is a distance between c and c′, and each coupling weight is sym-
metric (Up,q = Uq,p). The optimal solution to the problem, the shortest travel to
visit all cities, is expressed by the amoeba’s stably relaxed shape that maximizes
the body area while minimizing the risk of being stressed by light. The solution,
therefore, would be the most comfortable condition for the amoeba and can be
attained if the amoeba succeeds in elongating only the least-frequently stressed
branches and withdrawing the other ones.

To determine which branches to grow, the amoeba needs to examine a lot of
possible shapes (solutions) and to choose the minimally stressed one by com-
paring relative differences in the stressed frequencies of the candidates. It was
observed that the amoeba examined a wide variety of shapes in a trial-and-error
method by alternately expanding and shrinking its branches with its oscillatory
behavior. That is, the oscillatory behavior was shown to be essential for the
amoeba to attain the optimal solution because it enables the search of a broad
solution space [12]. Although the amoeba exhibited various oscillation modes
in the solution-searching processes, the dependence of the optimization perfor-
mances on the oscillation modes remained unclear. In this paper, we use our
model to compare the performances of the oscillation modes.
2 In the experiments, the area ṽq was measured from a digital image taken at each

interval ∆t = 6 sec using a video camera. The area ṽq should be distinguished from
the volume v̂q considered in the model, because the sum of the latter is constant
while that of the former is not.
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We make minor revisions of the above scheme to be embedded in the continuous-
time-state ordinary differential equations of our model as follows:

sq = 1 − Sgm(
∑

p∈Pq

Up,q sgm(v̂p)), (15)

where Sgm(V ) = 1/(1 + Exp{−B(V − Θ)}), b = 35, θ = 0.35, B = 1000, and
Θ = −0.5. Additionally, we allow the weight matrix to be asymmetric:





U0,0 U0,1 U0,2 U0,3

U1,0 U1,1 U1,2 U1,3

U2,0 U2,1 U2,2 U2,3

U3,0 U3,1 U3,2 U3,3



 =





0 0 0 0
0 0 − 0.3 − 0.3
0 − 0.4 0 − 0.3
0 − 0.2 − 0.3 0



 . (16)

As we saw in Fig. 3B, in the absence of the feedback stimulation (µ = 0), all
terminal nodes grow beyond the critical level Lθ to reach around

∑
q∈Q vq(0)/M

due to the diffusion of the initial volume of the hub node. Namely, the hub
volume is equally distributed to the terminals. On the other hand, when Eqs. (15)
and (16) are substituted into Eq. (12) with µ < 0, the feedback stimulation is
implemented. As shown in Fig. 1D, a terminal node q is stimulated (sq & 1)
if the other two terminals grow their volumes vq′ and vq′′ to reach nearly the
critical level Lθ. It is also confirmed in Fig. 3C that the feedback stimulation
interferes the amoeba to elongate at most two branches while the other one is
stressed by light .

As the growth of a branch brings to put certain levels of stresses on the other
branches, the branches come into conflict over the allocation of the hub volume.
We consider that this conflict presents a problem of finding an optimal way to
allocate the hub volume to the terminals such that the total of stresses subjected
to the amoeba can be minimized. We classify the volume allocation patterns by
checking if each node is in sub-critical level (vq ≤ Lθ) or in super-critical level
(vq > Lθ). Accordingly, there are 16 patterns as shown in Fig. 4. We quantify the
stress level as

∑
q∈Q sq v̂q, because in the first term of Eq. (11) we assumed that

each node is suppressed by a stress proportional to its volume when stimulated.

Fig. 4. Volume allocation patterns. Each circle over the critical level Lθ (broken lines)
represents vq > Lθ, otherwise vq ≤ Lθ. Flat-headed arrows indicate inhibition by light.
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3 Results

3.1 Diversities in Reachable Allocation Patterns

Typical examples of the problem-solving processes for all oscillation modes are
shown in Fig. 5. For each mode, we carried out 100 trials of problem-solving pro-
cesses started from the initial volumes (v0, v1, v2, v3) = (45, 5, 5, 5) and random
initial states xq ∈ [−3.0, 3.0] such that

∑
q∈Q xq = 0, where (µ, δ) = (−15, 10)

and (L, θ) = (40, 0.35). For the pattern classification in each trial, we used time-
averaged time series taken from t = 1000 to t = 1500. In almost all trials,
the nodes finally reached a steady behavior that fell into one of the allocation
patterns in Fig. 4, except for a few cases in the mode 4.

The histograms of the reached allocation patterns of all modes are shown in
Fig. 6A. The modes 1, 2, 3, and 5 attained three patterns b1+, b2+, and b3+,
but their frequency distributions were different. The mode 6 did not reach any
pattern other than pA in which all nodes are judged as slightly larger than the
critical level after the time-averaging.

Fig. 5. Time series of problem-solving processes at (µ, δ) = (−15, 10) and (L, θ) =
(40, 0.35) with the initial volumes (v0, v1, v2, v3) = (45, 5, 5, 5). In each v-panel, broken
lines show the reference volume L and critical level Lθ = 14. In each sv̂-panel, we
showed the stress level

∑
q∈Q sqv̂q which was time-averaged after reaching a steady

allocation pattern. For all modes, the parameters (ρ, f) were given as well as Fig.2.
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Fig. 6. Comparison of performances in diversity production (A) and stress minimiza-
tion (B) among the oscillation modes. (A) Distributions of finally reached allocation
patterns. (B) Distributions of time-averaged stress levels

∑
q∈Q sqv̂q.

On the other hand, the mode 4, spontaneous mode switching, achieved 12 dif-
ferent patterns. Note that most of these patterns were not transient but were
finally attained steady behavior. That is, the mode 4 is capable of not only
searching for a large number of patterns but also maintaining each of these di-
verse patterns. Additionally, in a few cases, we observed spontaneous transitions
among a number of patterns as shown in Fig. 7. This unstable transition behavior
was likely to be a transient behavior before reaching a steady pattern.

3.2 Stress Minimization Capabilities

Fig. 6B shows the histograms of the stress level
∑

q∈Q sq v̂q achieved by all modes.
For each mode, we analyzed the 100 trials of data used for Fig. 6A. The stress
level shown here was time-averaged from t = 1000 to t = 1500, and it might
be considered as a measure of discomfort felt by the amoeba resulting from
conflicts among its branches. The stress levels of the modes 1, 2, 3, and 5 were
relatively higher than that of the other modes. Namely, these modes maintained
their allocation patterns in highly stressed ways. The mode 6 showed better
performances in stress minimization, although it limits all nodes to have equally
small volumes in the pattern pA.

The mode 4, spontaneous mode switching, produced the best stress minimiza-
tion performances among all the modes. In most cases, the allocation patterns
were maintained in less stressed ways compared with other modes. There existed
a few stress-free cases in which no node was subjected to any stress while stably
maintaining the pattern p1+ or p2+. On the other hand, there were some cases
that were counted as highly stressed before reaching a steady pattern due to
spontaneous transition among multiple patterns, as we saw in Fig. 7.
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Fig. 7. An example of spontaneous transition among several volume allocation patterns
produced by the mode 4. All parameters were set as well as Fig. 5.

4 Discussion and Conclusion

We presented a dynamical system model of the amoeba-based neurocomputer
as a network of oscillators competing for limited resources. The model can be
used for the solution search of various optimization problems of how to allocate
limited resources to several nodes by minimizing the conflicts among the nodes.
The resource allocation problem considered in this study is unique, because
the problem should be solved under a looped constraint in which the system
has to search for an optimal allocation pattern of a given resource (i.e., the
amoeba’s volume) by using the resource itself as the cost for the solution search
(i.e., the growth movements of the amoeba’s branches). Metaphorically speaking,
the constraint is like a situation in which a consumer who tries to spend a
certain amount of money usefully is requested to buy some products just to know
their prices. That is, the history in information collecting process significantly
influences the final decision on the solution. Therefore, it would be preferable
that the time course of the process can be designed appropriately.

In order to cope with this unique problem, the model exploits the oscillatory
behavior in the volumes of the nodes to perform deterministic trial and error for
the solution search. The model produced a number of spatiotemporal oscillation
modes, and these modes implemented different time courses of trial and error.
We compared the performances of these modes in solving the problem. The
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best performances were achieved by a complex mode in which the oscillators
spontaneously switch among several modes.

The complex behavior reproduced well the amoeba’s oscillatory behavior ob-
served experimentally. Additionally, it resulted in spontaneous transition be-
havior among a number of solutions, which also looks similar to the amoeba’s
observed behavior in solving optimization problems [9,10,11,12,13]. In the ex-
periments, after reaching a solution, the amoeba spontaneously destabilized the
once-stabilized solution by elongating its branch under stressed condition and
performed transition among multiple solutions. These similarities suggest that
our model captures the essence of the amoeba’s dynamics and will be a useful
tool in exploring the origin and potential applications of the amoeba’s compu-
tational capabilities.

Many natural, computing, economical, and social systems compete for limited
resources and face problems similar to ours. In the absence of supervisor sys-
tems, these competitive systems need to discover optimal allocations in their own
sophisticated trial-and-error methods. Our model is easily extended to model di-
verse competitive systems. Indeed, various dynamical systems can be coupled in
the proposed form, and the object functions can be replaced freely by alternative
ones as long as their optimal solutions can be obtained analytically. Thus, we
expect that the framework of our model provides various insights for establishing
efficient trial-and-error methods in a wide spectrum of competitive systems to
solve the problems.
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