A Formal Framework for Autocatalytic Sets

Wim Hordijk & Mike Steel

Introduction

- The idea of autocatalytic sets is more than 40 years old (Kauffman, 1971).
- Autocatalytic sets are believed to have played an important role in the origin of life.
- Development of a formal framework for studying the emergence & evolution of autocatalytic sets.

Autocatalytic Reaction

Autocatalytic Set

Autocatalytic (RAF) Set

- An autocatalytic (RAF) set is a set of reactions and associated molecules, which is:
 - Reflexively autocatalytic (RA): all reactions in the set are catalyzed by at least one molecule from the set itself.
 - Food-generated (F): all molecules in the set can be produced starting from a "food set" and using only reactions from the set itself.

The Binary Polymer Model

- A set of molecules represented by bit strings up to length n, with food molecules up to length t (with t << n).
- A set of reactions of two types:
 - ∎ ligation: 000+111→000111
 - cleavage: 0101010→0101+010
- Randomly assigned catalysis:
 - Pr[m catalyzes r] = p

RAF Set Example

n=5 t =2 p=0.0045

Original Claim

"The formation of autocatalytic sets of polypeptide catalysts is an expected emergent collective property of sufficiently complex sets of polypeptides, amino acids, and other small molecules."

(Kauffman, 1986)

Basic idea: Given a fixed probability of catalysis *p* and increasing *n*, at some point there is a phase transition where the entire reaction graph becomes an autocatalytic set, similar to giant connected components appearing in random graphs.

- Given a chemical reaction system (CRS), decide whether there exists a subset of reactions and molecules that forms an RAF set.
- Returns:
 - the maximal RAF set within the given CRS, or
 the empty set.
- Polynomial running time in the size of the CRS.

RAF Algorithm

Growth Rate in Level of Catalysis

Template-based Catalysis

SubRAFs & Irreducible RAFs

Poset of subRAFs

Modeling Experimental Systems

ARTICLE

doi:10.1038/nature11549

Spontaneous network formation among cooperative RNA replicators

Nilesh Vaidya¹, Michael L. Manapat², Irene A. Chen³[†], Ramon Xulvi-Brunet³, Eric J. Hayden⁴ & Niles Lehman¹

RAFs in the RNA Replicator System

Cooperation vs. Selfishness

Conclusions

- Formal framework for autocatalytic (RAF) sets.
- Efficient algorithm for finding RAF sets.
- High probability of RAF sets in binary polymer model with moderate level of catalysis (linear bound).
- Realistic extensions like template-based catalysis.
- Evolvability from hierarchical structure of subRAFs.
- Applicable to real chemical networks.

Autocatalytic Collaboration

Mike Steel

W. Hordijk & M. Steel. A formal model of autocatalytic sets emerging in an RNA replicator system. *Journal of Systems Chemistry* 4:3, 2013.

THE ORIGIN OF LIFE

