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In the fall of 2010 a remarkable announcement...

A potential fifth world around Gliese ("Gle’za™) 581



Planets in the “Habitable Zone”
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Habitable Zone = Liquid water possible on Planet
surface

Liquid water may imply life, but an abiotic carbon cycle is also

‘required” for the emergence of life...




Biochemistry does not actually “like” water- The “Robert Shapiro

Conundrum’

Protein
Glycogen
Ecoli Total

°c Frequency (ppm)

13C NMR showing you bacteria as a molecular
spectroscopist observes them...

60-70 protein, ~ 15 % glycogen, ~ 11 % lipids,
~ 5 % BRNA/DNA




60 - 70 % protein... Life.Works to get
AA + AA = (AA)2 + Hzo rid of water

~ |5 % glycogen...
glu + glu -> glycogen + H,O

~ || % lipid
acetyl-CoA + malonyl-CoA = Lipid + H,O

~ 5 % RNA/DNA
aminoacyl nucleotide X 2-> dinucleotide + H,O

all of this takes ATP; where ADP + Pi -> ATP + H,O




Meteorites provide information on how planets evolve
Prolific Abiotic Organic synthesis is required for origins of

life /Iron

Stony-iron

Meteorites < ~Achondrites

Differentiated

Undifferentiated

\Stony <

\-Chondrites = Primitive, lots of
reduced carbon, metals




Carbonaceous chondrite parent body interiors- an
environment where prebiotic synthesis plausibility is known
fact (scientists not involved!)

Environment:

Warm (not hot)
Wet- not soaked

Initially far from equilibrium (interstellar ice, metals,
anhydrous silicates, organics)

Relatively rich in reduced carbon
Catalytic phases FeNi metal + FeS

Potentially millions of years of mild hydrothermal reaction
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Table 1. Counts of elemental compositions as a function of extraction solvents and calculation procedures

Sum all C, H, O,

Sum all C, H, O, N (<£3),

Number of N (<3), S (£3) S (<3) elemental
signals, elemental compositions  compositions (DBE > 0,

Solvent S/N2 (S/N 1) (200 ppb, N-rule) H/C< 25, 0O/C<0) CHO CHOS CHNO  CHNOS
Water 17,784 6,145 4,170 1,333 470 1,759 608

Methanol 31,554 (113,493) 15,380 (29,498) 10,299 (12,313) 1,526

2,311 (2,680) 3,051 (3,473) 3,411 (4,455)

Methanol 24,347 8,627 4,540 1,008 598 1,681 1,253
Ethanol 27,835 11,951 7,852 1,097 2,168 1,969 2,618
Acetonitril 17,306 3,757 1,720 144 693 217 666
DMSO 12,741 1,619 264 57 55 48 104
Chloroform 18,986 4,589 2,236 926 369 815 126
Toluene 15,532 3,255 994 550 198 129 117
Total 141,738 46,696 27,535 5,633 6,264 7,988 7,650
Unique 100,687 26,530 14,197 2,022 3,340 4,021 4,814

Schmitt-Kopplin et al (2010) PNAS



Common metabolic intermediates present in Murchison...
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And some non-metabolic “intermediates...””-°%Pe" et 2 (2011) PNAS



Cooper concluded that all of these formed immediately after
planetesimal accretion, but... most are unstable in water over time

1/2 life at 200 °C 10

. Citric Acid )
minutes

o

Note that Citric acid
./ IS more robust than
any alpha keto acid!
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How could any of

these survive 10°
years of agueous
alteration? Can’t
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1/2 life ~ 10 Cody et al. Unpublished

min.s



Cooper et al. (201 1) envisions an immediate explosion of
molecular complexity

* But, aqueous alteration of Murchison Parent body lasted
upwards of |0’s of millions of years.

* Most of compounds detected are unstable in warm

water short 1/2 lives ...virtually none of these
compounds would be expected to survive 100’s to 10,000
years. Oxalacetate would not survive days...

* This requires that these compounds represent a
continuous, replenishing, dynamic organic reaction
network: the “holy grail” of abiotic organic chemistry.




Terrestria I
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Extensive organic chemistry on Earth appears improbable!




Plate tectonics saves the day! Maybe... but why!?

Cenozoic l Cretaceous | Jurassic |

Modern ocean floors colour-coded by geological age



Where new Sea floor is formed... one has a continous new environment
that provides lots of free energy. A successful situtation for 4.5 Ga!
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Formation of fresh sea floor provides an environment far from
equilibrium
And where abiotic organic reactions can occur




Pyrite

leads to ore bodies which
provide excellent catalysts




Assaying transition metal sulfide minerals for C-
fixation...

R-SH + CO + H20 -—>>
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Transition metal sulfides catalyze other reactions...
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For CO reduction to CH;

Cody et al GCA 2004
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A lot can form from a little...

For example: If you start with butanoic acid and
isobutanoic acid and allow for following reactions...

carbonyl insertion

partial oxidation

Retro-Aldol cleavage

Aldol condensation

Amination and reductive amination

One easily generates in excess of 350 molecules
including saturated and olefinic polycarboxylic acids,
amino-acids, keto acids, alcohol acids




Many of the Cooper et al molecules observed 201 |
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Were are found via exp. by Cody et al 2001,



The “Chris Chyba Question” (~ 2001)

Carbonaceous chondrite parent bodies clearly had all
that was necessary for wide ranging abiotic
organosynthesis.... nucleobases, amino acids, sugars,
central metabolic intermediates ... all of the molecules
we recognize as essential to life...

But as far as we can tell* no evidence that life emerged
in these bodies. VWhat does this tell us?

*Are we missing something here! Life as we do not
know it? Proto-life! Unknown...




So why did life emerge on Earth and “apparently” not on
chondritic parent bodies!?

Easy answer: Don’t know
Reality there are some differences...

Tectonics created a novel environment....

And a recursive environment (consistent for 4.5 Ga)
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The abiotic organic chemistry on Earth was localized and
temporal- Key: Water-rock interaction via tectonics
continuously generated disequilibrium

“Emergent chemistry on a treadmill”
That which did not succeed was carried off to the
abyssal wasteland. Innovation against progressive

alteration was awarded with fresh substrate.

Continuous opportunities to “invent’- fail and you die

A strange but familiar Darwian Landscape... maybe
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