Session 5: Evolution of Earth-Life System

Early evolution of ocean, atmosphere & life: Constraints from the geological record

Ueno & Yoshida (ELSI / Tokyo Tech.)

How to decode early

- Ocean
- Atmosphere

Ueno

Yoshida

Life/non-Life

Ocean & atmosphere: link with origins of life

Volume of the early ocean

"Water Paradox"

too much H2O = no landmass

Reducing atmosphere favors prebiotic synthesis

 CO_2/N_2 Bad

 $H_2/CO/CH_4/NH_3$ Good

ELSI's approach

Ocean

Decoding from the past oceanic crust

How to identify the past oceanic crust:

<u>Criteria</u>

- (1) Oceanic Plate Stratigraphy (from MOR to trench)
- (2) Ocean floor metamorphism (Seawater-Rock reaction)
- (3) Shortening structures (at subduction zone)
- (+/- 4: subduction zone metamorphsim)
- (5) Downward younging (chronological criteria)

Field Mapping & Sampling of Tokyo Tech. EEM (since 1991)

Seawater + basalt = hydrated basalt

Decoding Evolution of Ocean (D/H, other chemistries)

Systematic analysis of Archean oceanic crust

Change in the ocean volume H-escape vs Degassing from mantle

Implication to: Origin & Evolution of SW

<u>Origin</u>

- Comet
- Comet (Jupiter family)
- C-chondrite
- O-chondrite
- E-chondrite

0 ~ -100‰ -500‰ 2

δD

+1000%

 $\sim 0\%$

Nebular gas

-900‰

Data from Greenwood et al. (2011)

Evolution (seawater volume)

- Decrease: H-escape to space
- Increase: degassing from mantle comet accretion
- $\frac{\delta D}{\delta D} \downarrow \\ \delta D \uparrow$

The first atmosphere was CO₂-rich ?

Thermodynamic calc. @1500K eq. (Scheafer & Fegley, 2010)

Atmosphere

No direct evidence (or sample)

S-MIF (Sulfur Mass-Independent-Fractionation)

$$\Delta^{33}S = \delta^{33}S - 0.5 \ \delta^{34}S$$

Normally: $\Delta^{33}S = 0$

The isotope anomaly: only seen in >2.4 Ga sedimentary rocks (Farquhar et al, 2000)

MIF tells reducing atmosphere

- SO₂ photolysis yields MIF
- Two carriers: S^0/SO_4 (+/- $\Delta^{33}S$)

O2-free Atmosphere

06

3000

3500

MIF preserved if

10

8

6

4

2

0

-2

4000

A33S ‰

• low pO₂: < 1 ppm</pre> (Pavlov & Kasting, 2002)

1500

1000

500

Age [million years ago]

2000

Δ^{33} S: Preservation requires "very reducing" atm.

10 ppm SO2 injected into 1bar N2 atmosphere 5km alt. 1ppm H2 / hydrocarbon chemistry not considered

Signal beyond O₂-level: $\Delta^{36}S/\Delta^{33}S = -2 \sim -0.8$

 $\Delta^{36}S/\Delta^{33}S$ Global Signature? : Tested by Indian section

Mishima et al. (in prep.)

$\Delta^{36}S/\Delta^{33}S$ trend: change in atmospheric chemistry

Spectroscopy of SO₂ isotopologues

Danielache et al. 2008

2010-2011

- sample: 32,33,34-SO₂ (>95% purity)
- preparation: one by one
- resolution: 25 cm⁻¹
- detector: GaP diode

- 32,33,34,36-SO₂ (>98% purity)
- same O-isotope
- 4 cm⁻¹ (~0.003 nm)
- VUV diode *higher S/N @ 200 nm

Summary 2

• $\Delta^{36}S/\Delta^{33}S$

change through time (global signature)

can be useful to trace atmospheric chemistry (not only O_2 -level)

• Archean atmosphere was more reducing than previously thought $(CO_2 < 0.1 \text{ bar})$

Life Abiotic / biotic

Origin of materials through isotopomer analysis

Many isotopomers of GHGs,O3, and bio-molecules exist in the each molecular species.

Frontier of 3 factors in Isotopomers

Biosynthesis and metabolism can be traced from ISP in bio-molecues

3. DIS double isotope substitution $^{12}C^{2}H^{1}H_{3} + ^{13}C^{1}H_{4} ≈ ^{12}C^{1}H_{4} + ^{13}C^{2}H^{1}H_{3}$ $^{12}C^{16}O^{18}O + ^{13}C^{16}O^{16}O ≈ ^{12}C^{16}O^{16}O + ^{13}C^{16}O^{18}O$ $^{32}S^{18}O^{16}O + ^{34}S^{16}O^{16}O ≈ ^{34}S^{18}O^{16}O + ^{32}S^{16}O^{16}O$ $^{14}N^{14}N^{18}O + ^{14}N^{15}N^{16}O ≈ ^{14}N^{15}N^{18}O + ^{14}N^{16}O^{16}O$

Tracers for photochemical processes in the atmosphere

DIS provides molecular thermometer since isotope substitution factor is a function of temperature

We are working on material cycles through 3 factors

Overview

- 1: Scope & contributions: Environment, linkage between earth and life
- 1-1: Geochemistry, Isotope biogeochemistry, Material cycle analysis
- 1-2: Studies of the early Earth's environment & its evolution with no life, early life, or evolved life
- 1-3: Innovative method of isotopomer analysis; instruments
- 1-3-1: Intra-molecular Site Preference of isotope distribution (ISP); NMR, IRMS, spectroscope (SS), Ultra
- 1-3-2: Mass Independent Fractionation (MIF); IRMS, SS, Ultra
- 1-3-3: Double Isotope Substitution (DIS): IRMS, Ultra

2: Approach:

- 2-1: isotopomer fractionation simulation of geochemical processes
- 2-1-1: metabolic and organic
- 2-1-2: physicochemical
- 2-2: isotopomer analysis of modern analog (hydrothermal area)
- 2-2-1: terrestrial hot spring biomat
- 2-2-2: deep-sea hydrothermal system
- 2-3: isotopomer analysis of the early Earth's proxies, biomarkers (n-alkanes) crude oils, sedimentary rocks, meteorites, Hayabusa

2-4: modeling of the early Earth material cycle with no life, early life, or evolved life

Valley et al. (2002)

Cool Early Earth Scenario (based on zircon d180)

ISOTOPES

ISOTOPES AND ISOTOPOMERS

What can ¹³C-isotopomers tell us about the origin and evolution of life ?

ISOTOPOMERS & METABOLISM

C-atom positions in acetogenic
lipids derive from carboxyl (●) and
methyl (●) positions of acetyl-CoA

Any change in the metabolic pathway of acetyl-CoA will affect the isotopic composition of C-atom positions of acetogenic lipids and will be potentially recorded in hydrcarbons from SOM Preliminary results on heavy n-alkanes (C_{17} - C_{27}) distilled from petroleum

(Gilbert et al., under reviewa)

Odd-over-even predominance of Archean organic matter

CuPy-GC/MS @650°C of 3.5 Ga kerogen (Derenne et al., 2008)