Cosmochemistry geochemistry, & astrobiology on icy satellites: From Cassini to JUICE

Yasuhito Sekine
Univ. Tokyo
ELSI kick-off meeting,
29 March 2013

What are icy satellites?

- **Ice-covered moons** around giant planets
- Wide variety in activity, surfaces, & interiors

Ice Covering **Callisto** Liquid Ocean Under Ice

Low geological activity

Europa

Extensive & prolonged

activity, interior ocean

Cassini mission to Saturnian system

(2004-2017)

Mass spectra of Enceladus' plume

Gas: H_2O + C-species (CO_2 (1-5%), CH_4 (1%), alcohols, aldehydes) +N-species (NH_3 (1%), HCN) (Waite et al. 2009)

Solids: H₂O ice with Na-salts, carbonates (Postberg, 2009; 2011)

Mapping of ices & organics by Cassini

Cassini has opened an important window into the chemistry of icy satellites

Clark et al., 2012

lapetus: a Saturn's mid-sized moon

Why think about chemistry?

Present-day composition =

initial conditions + subsequent evolution

Protoplanetary disk Giant planet formation

Callisto: "fossils"

Satellites that are not active

- Geological processes
- **Geochemical products**

Europa, Enceladus

Active satellites

Formation of solar system & icy satellites

Initial comp. ⇔ solids in protoplanetary disk/sub-disk

Ice composition: proxy for temperature

Trapping of gas into ice: Gas species are trapped in solids, but the condensation temperature depends on the gas species (e.g., Hersant et al., 2004; Alibert & Mousis, 2007)

```
Multiple snowlines N_2, CO, Ar (30 K) N_3, CH<sub>4</sub>, Xe (50 K) N_2 (80 K) N_3 (80 K) N_4 (160 K) N_2 (80 K) N_4 (160 K) N_2 (160 K) N_2 (160 K) N_2 (160 K) N_3 (160 K) N_4 (160
```

Cassini: Enceladus & Titan→lack ³⁶Ar, lots CH₄ & NH₃

→ disk temp @ Saturn: ~30–50 K (Mousis et al., 2009)

JUICE mission: High-resolution observations of volatiles on Jupiter's moons

Isotopes of volatiles: D/H of water

• D/H ratio of H₂O: Isotope exchange between H₂O & H₂ occurred as a function of disk temperature, viscosity, & timing of gas dissipation (e.g., Drouart et al., 1999; Mousis et al., 2000)

homogenized

Isotopic exchange

Presolar values

Protoplanetary disk

JUICE mission: diffuse H₂O atmospheres on Ganymede & Callisto

Characterization of our solar system

Temperature profile of our disk Building materials of Earth

High-resolution observations (ALMA, TMT)

Structure of protoplanetary disks How common is the initial condition

High-resolution observation of protoplanetary disks (c) ALMA

Exploration of the solar system: Factual evidence to characterize our solar system

Why think about chemistry?

- **Present-day composition =**

 - initial conditions + subsequent evolution

Protoplanetary disk Giant planet formation

Callisto: "fossils" Satellites that are not active

Geological processes Geochemical products

Europa, Enceladus

Active satellites

Enceladus' plume & interior ocean

Primary questions Are there any hydrothermal systems? What are particular conditions of temperature fluid pH, and rock components?

Cold or hot in Enceladus?

• If hot, N_2 should be observed in the plumes formed by thermal dissociation of NH_3 : $2NH_3 \Rightarrow N_2 + 3H_2$ (Matson et al. 2007).

Experimental

Enceladus interior ~ Earth's sea floors

 $P = 100-400 \text{ bar & T} < 400^{\circ}\text{C}$

Starting materials

An aqueous solution of NH_3 (1%) & $NaHCO_3$ (CO_2) (0.1% or 3%) (pH = 10)

Powdered olivine + opx

(Mg# (=Mg/(Mg+Fe))=

90) (rock:water = 1:5)

Results: at 300°C

NH₃ dissociation is kinetically inhibited due to high activation energy and high concentrations of H₂

$$\begin{array}{c} \text{NH}_3 \leftarrow \text{N}_2 + 3\text{H}_2 \\ \text{Magnetite} \\ \text{NH}_3 \leftarrow \text{N}_2 + 3\text{H}_2 \\ \text{Magnetite} \\ \text{Time (hours)} \end{array}$$

Results: pH, silica, & temperature

Fluid pH

Earth: mineral (e.g., brucite ⇔ Mg²⁺ + 2OH⁻)

Enceladus: volatiles (e.g., $NH_3 \Leftrightarrow NH_4^+ + OH^-$)

→ pH 9-10

More important result

planetary science + geochemistry + biology

= oceanic planetology?

Ganymede

Europa

JUICE mission: detailed investigations of surface materials for Ganymede & Europa

Conclusions

Icy satellites are a key for characterizing our solar system and geochemical processes and provide an opportunity for interdisciplinary researches.

Europa

Low H₂?

High temperature?

Ganymede

Callisto

Reducing?

High H₂?

Earth

Lost city

Black smoker

(Kelley et al., 2001; 2005; Proskurowski et al., 2008)

Availability of elements in icy satellites

N₂, CO, Ar (30 K) NH_3 , CH_4 , Xe (60 K) H_2O (160 K) CO_2 (100 K) Protoplanetary disk Depleted in C and N **Contain lots** of C and N Contain lots of C but depleted in N

Habitability

 Constraints on oceanic environments beneath the surface from chemical compounds of dust particles

(Postberg et al., 2009; 2011)

What are the compositions of Enceladus' ocean? What kinds of chemical reactions take place?

- → Dusty point of views from Cassini (Frank's & Sean's talk)
- → From a biogeochemical point of view (Shibuya-san's talk)

Origin & distribution of water

- Source(s) of H, C, O, and N → Isotopic compositions of primordial volatiles (H₂O, CO, CO₂, N₂, & NH₃)
- Not a simple two component model

Isotopes of volatiles

 Evolutional model of protoplanetary disk including isotopic exchanges (e.g., Drouart et al., 1999; Mousis et al., 2000; Yurimoto & Kuramoto, 2004)

Presolar

D/H of H₂O at Jupiter forming region

⇒ Disk temperature & gas dissipation

D/H evolution model in a disk

ς