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What are icy satellites?

Ice Covering

Callisto

Liquid Ocean Under Ice

Extensive & prolonged
Low geological activity activity, interior ocean



Cassini mission to Saturnian
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Mass spectra of Enceladus’ plume
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Mapping of ices & organics by Cassini

=8 2-micron absorptons:
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Yellow= ice + triplet
Green = asymmetric
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Cassini has opened an important window
into the chemistry of icy satellites
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Clark et al., 2012

lapetus: a Saturn’s mid-sized moon



Why think about chemistry?

Present-day composition =
initial conditions + subsequent evolution

Satellites that are not actlvg : Active satellites



Formation of solar system & icy satellites

snowline Protoplanetary disk
imals cv planetesimals

Protoplanets
Proto -Jupiter Proto-Saturn
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Rocky planets
o

Initial comp. & solids in protoplanetary disk/sub-disk



Ice composition: proxy for temperature
Trapping of gas into ice: Gas species are trapped in

solids, but the condensation temperature depends on
the gas species (e.g., Hersant et al., 2004; Alibert & Mousis, 2007)

Multiple snowlines N,, CO, Ar (30 K}
NH,, CH,, Xe (50 K)
H,0 (160 k) CO, (80K)
\

Protoplénetary disk
/i

Cassini: Enceladus & Titan—>lack 3°Ar, lots CH, & NH,
— disk temp @ Saturn: “30-50 K (mousis et al., 2009)

JUICE mission: High-resolution observations of

volatiles on Jupiter’s moons



Isotopes of volatiles: D/H of water
* D/H ratio of H,O: Isotope exchange between H,0 & H,
occurred as a function of disk temperature, viscosity, &

timing of gas dissipation (e.g., Drouart et al., 1999; Mousis et al., 2000)

Isotopic exchange Presolar values

homogenized
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Characterization of our solar system

ﬁheoretical disk modew High-resolution \
Temperature profile of our disk observations (ALMA, TMT)

Building materials of Earth Structure of protoplanetary disks
a - How common is the initial condition

Parameters Mb=009 Mg RD= 15 A.U.

. Temperature (K) Time
\ (years)

of w(Drouart et al., 2000)
0 5 10 15 20
Radius (A.U.)

High-resolution observation of
rotoplanetary disks (c) ALMA
) protop y (c)

Exploration of the solar system: Factual evidence to

characterize our solar system



Why think about chemistry?

Present-day composition =
initial conditions + subsequent evolution
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Satellites that are not active :



Enceladus’ plume & interiof ocean




Cold or hot in Enceladus?
* If hot, N, should be observed in the plumes formed

by thermal dissociation of NH;: 2NH; = N, + 3H,
(Matson et al. 2007).

o 3T”

lack of N, & abundance fiﬂfa nanoparticles
of NH, in the plumes B SUetEl. in prep.)

(Hansen et al., 2011) Ly



Experimental

Enceladus interior ~ Earth’s sea floors
P = 100-400 bar & T < 400°C

e Starting materials Pressurized A

2 ¥
. water
An aqueous solution of

NH; (1%) & NaHCO, Gold tube N 2.
reaction cell :
(CO,) (0.1% or 3%) . ,. f
(pH = 10) o S TR
: '."‘s,‘ ‘e =
Powdered olivine + opx . . d( - bl
(Mg# (=Mg/(Mg+Fe) P

90) (rock:water = 1:5)

.
Inconel-alloy "
autoclave y
\



Results: at 300°C

* Dissolved gas species  « Mineralogical analyses

35;"""" 1 forthe rock material

Sl 165% of olivine was converted
g 25 | 1 to serpentine & magnetite
L ﬁ f oivine _serpentine

NH, dissociation is kinetically inhibited due to high

activation energy and high concentrations of H,

NH, < N, +3H
L4/. j b magnetite
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Re

Fluid pH

sults: pH, silica, & temperature

Earth: mineral (e.g., brucite & Mg?* + 20H")
Enceladus: volatiles (e.g., NH; < NH,* + OH")

- — pH 9-10

0
)Experiment

[ CassSini (Hsu et al. in prep.
= Silica ~ a few mM
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More important result

planetary science + geochemistry + big Iogy

JUICE mission: detailed investigations of
surface materials for Ganymede & Europa



Conclusions

Icy satellites are a key for characterizing our
solar system and geochemical processes and
provide an opportunity for |nterd|SC|pI|nary

researches. p
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Reducing?
High H,?

(Kelley et al., 2001; 2005; Proskurowski et al., 2008)



Availability of elements in icy satellites

N,, CO, Ar (30 K}
KI\)IH3, CH,, Xe (60 K)
\
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H,0 (160 K) €O, (100
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Protopla"netary disk
/4

Depleted in Cand N Contain lots

of Cand N
Contain lots of C but depleted in N



Habitability

e Constraints on oceanic environments beneath the

surface from chemical compounds of dust particles
(Postberg et al., 2009; 2011)

\ (NaOH)(NaCl)Na
(Na,CO,)Na*

What are the compositions of Enceladus’ ocean?
What kinds of chemical reactions take place?

— Dusty point of views from Cassini (Frank’s & Sean’s talk)
— From a biogeochemical point of view (Shibuya-san’s talk)

Na-rich: Na/H,0 > 10-3
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Origin & distribution of water

* Source(s) of H, C, O, and N — Isotopic compositions of

primordial volatiles (H,O, CO, CO,, N,, & NH,)

* Not a simple two component model

D/H ratio

D/H ratio
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i (Hartogh et al., 2011) Oort cloud comets .
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Isotopes of volatiles

* Evolutional model of protoplanetary disk including

|SOtO piC EXCh a nges (e.g., Drouart et al., 1999; Mousis et al., 2000; Yurimoto & Kuramoto, 2004)
Presolar

D/H of H,O at Jupiter forming region

= Disk temperature & gas dissipation
D/H evolution model in a disk



