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Relevant efforts to the emergence of metabolism 
(by no means a complete list!)

❖ Geochemistry: Chemical, kinetic & energetic boundary conditions 

❖ Microbiology/enzymology: Context from extant biochemistry

❖ Phylogenomics: Statistics on metabolic content of LUCA

❖ Theoretical chemistry/computer science: Network/system-level 
properties of (organic) chemistry
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There are two main classes of pathways and 
whole-metabolisms

Catabolism Anabolism

Biomass

Autotroph
Input = Inorganics
Anabolism only

Heterotroph
Input = Organics

Catabolism + Anabolism
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Carbon-fixation is the metabolic foundation of the biosphere, 
and the base of a metabolic tree of life
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Building metabolic trees: integrating phylogenetic 
and metabolic reconstructions
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of pathways contains signal on their evolution



Phylometabolic analysis: phylogenetic distributions 
of pathways contains signal on their evolution



Phylometabolic analysis: phylogenetic distributions 
of pathways contains signal on their evolution

Orange pathway is the ancestral 
form, others are derived



Ancestral pathway

Continuity in metabolite production provides functional 
constraint to reconstruct tree of phenotypes

Phylometabolic Trees: Lineages of 
functional metabolic networks



Ancestral pathway

Phylometabolic Trees: Lineages of 
functional metabolic networks

Use topological bottlenecks to delineate evolution 
of metabolic sub-systems



Citric acid cycle: bottleneck between carbon-
fixation and anabolism
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Aspartate Lipids

Glutamate
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Amino acids

Amino acids

Alanine
Nucleotides

Histidine

Nearly all anabolic pathways start from TCA intermediates, 
which must thus be reached during carbon-fixation!
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Continuity in connection between CO2 and bottlenecks 
to anabolism delineates evolution of carbon-fixation



There are 6 known carbon-fixation pathways 
across the tree of life: 5 cyclic, 1 linear

❖ Calvin-Benson-Bassham cycle: dominant fixation pathway, but 
late in evolution, and distinct in (phosphate-sugar) chemistry

❖ Five remaining (deep-branching) pathways: 4 cycles, 1 linear



4 Deep-branching cycles share arcs, swapping out 
others, but connection points are preserved
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Arcs repeat the same simple local functional group chemistry, 
while “crux moves” are complex and highly conserved

ISC

4HB

H2OCAC

CRT 

OXS

SSA 

H2

CIT 

AcACE 

OXA

ACE

AKG

H2O

H2

CO2

CO2

H2O

3HB

H2
H2O

H2O

PYR

MLN

H2

H2O

CO2

CO2

MAL

3HP

H2

H2
SUC

PRP
MEM

CO2

H2O

H2O

FUM

ACR

GLX

CTM

H2O

MSC

MML

GLX

PRP

H2O

MSC CTM

PYR

ACE
MML

O

O−

O
O

O−

O

O− O−
O−

O
O

O
O−

O

O−

O

O
O

O−

O

O−

O−

O
O3HP (long)

rTCA (long)

4HB

rTCA (short)

3HP  (short)

ACE

MLN

H2

H2O

OXA

MSA

MAL

3HP

H2 H2O

FUM

ACR

H2

SUC

PRP

MEM

CO2

H2O
O

O

O

O
O

O
O

OO
O

O

OO

O

O

O
O O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O
O

O
O

CO2

H2O

PYR

CO2

H2O

SUC

ISC

4HB

H2O

CAC

CRT

OXS

SSA

H2

CIT

AcACE

OXA

ACE

AKG

H2O

H2

CO2

CO2

H2O

3HB

H2 H2O

O
O

O

O

O

O

O
O

O

O
O

O
O O

O

O

O

O
O

O

O
O

O

O

O

O O
O

O

O

O

O

O

O

O

O

O O

O

O

O

OO
O

O O
O

O

OO

O
O

O

O

O−

O−
OO

O



Linear (WL) pathway is unique for being universal 
as well as for how it uses cofactors
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Fixation pathways generally do not reach all bottlenecks 
to anabolism within TCA directly
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Pathways always complete the set by reusing TCA arcs
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Re-use of reaction sequences and sharing of pathway 
arcs allows us to “coarse-grain” carbon-fixation



“Coarse-grained” carbon-fixation: reaching all 
TCA intermediates
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Glycine synthesis helps clear things up
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Folate pathway to glycine and serine is widespread, 
represents ancestral route to these molecules
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represents ancestral route to these molecules
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Increased similarity between deep-branching 
rTCA and WL suggest underlying template
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rTCA and WL lack distinctive components relative to linked 
rTCA+WL, suggesting evolutionary connection
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All forms connected: phylometabolic tree 
of carbon-fixation
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Innovations in carbon-fixation appear to underlie 
many of the deepest branches in the tree of life



What does tree teach us about ancestral carbon-
fixation (and its emergence)?
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Topology of rTCA allows exponential growth, 
but has threshold fragility
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Topological analysis: rTCA+WL would be kinetically 
favored under abiotic conditions!
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Adding WL to rTCA removes threshold behavior, leading 
to more robust form of exponential growth
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rTCA-WL allows an ordered flow of organic chemistry, 
increasing probability of additional feedback
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CO2

How is it embedded within the rest of metabolism?

rTCA-WL allows an ordered flow of organic chemistry, 
increasing probability of additional feedback
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rTCA

How does biology catalyze this chemistry?

WL

Looking for the geochemical roots of metabolism
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Did metallo-enzymes, N-heterocycles, and alkyl-thiols 
“lift metabolism off the rocks”?



Conclusions

❖ Integrating phylogenetic and metabolic reconstruction leads to a 
“metabolic tree of life”

❖ Phylometabolic tree of carbon-fixation connects all forms and 
identifies environmental driving forces for divergences

❖ Findings suggest that geochemical perturbations of carbon-fixation 
pathways resulted in many of the deepest branches in the tree

❖ Character of root suggests that metabolism can be explained as 
feedback stabilization of autocatalysis initially facilitated by minerals
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