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“Prebiotic Soup” 
~4,000,000,000 years ago 

The emergence of the first 
cell-like entity, the Protocell. 

Life is a self-sustaining 
system capable of undergoing 

Darwinian evolution. 



The problem 

Organic molecules 
More complex chemical  
entities capable of:  

Replication 

Mutation 

Selection 
& 

Evolution 4 
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Life requires information. 
Information undergoes evolution. 

Which came first: chicken or egg? 
Chicken + Egg = Chegg J 

What is        ?  Occam’s razor –  
simple 
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The Cell as a Complex Network 



RNA World / Replicator-First 
Altman and Cech – self-cleaving Ribozyme (Nobel 
prize in Chemistry, 1989). 

RNase P 

Could            be a ribozyme? 
Strongly dependents on covalent 

bonds 

•  Difficult to form 

•  Mutation = breaking and remaking 

two covalent bonds 
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Could            be a Micelle? 
Held together by non-covalent 

bonds.  

•  Forms spontaneously 

•  Mutation = “random access” lipid 

entry/exit 

Much simpler! 

The Lipid World 

Micelle: 10-8 meter 

amphiphile 
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Replication 

Mutation 

More complex chemical  
entities capable of:  

= 
“Deliver” all of that? 

The Lipid World 

Selection 
& 

Evolution 9 
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DNA / RNA / Polymers à 
Sequence 

Assemblies / Clusters / 
Vesicles / Membranes à 
Composition 

Segre and Lancet, EMBO Reports 1 (2000) 
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Sequential vs. Compositional Information 

Alphabet: 20 amino acids 

10-letters long polymer 

10 molecules 
assembly 
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Maurer et al, Astrobiology 9 (2009) 

Composition effect vesicle encapsulation-efficiency 

Phenotype 



The evolution of authority 
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GARD model (Graded Autocatalysis Replication Domain) 

Homeostatic growth 

Fission / Split 

β	


Segre, Ben-Eli and Lancet, Proc. Natl. Acad. Sci. 97 (2000) 

Symbolic 
lipids 
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j	
 i	

βij	
βij	


β ; Catalytic Network (environmental chemistry) 

More mutualistic More selfish 

β	


*Self-catalysis is the 
chemical manifestation 
of self-replication [Orgel, 
Nature 358 (1992)] 

NG = 100 

Dyson, Gánti, 
Kauffman, Varela 



Amount n1  

Amount n3  

Amount n2  

Fixed point or 
quasi-stationary 
state 

Composome 

Trajectory in NG-dimensional 
compositional space 

A faithfully 
replicating 
composition 

GARD Dynamics 
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Experimental Vesicle Heredity 

Andes-Koback and Keating, JACS 133 (2011) 10-6 meter 

First generation 

Second generation 

Membrane composition was inherited 
by daughter vesicle, and affected 
daughter fission. 
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Example of GARD Similarity ‘Carpet’ 
Following a single lineage.	


Generation

G
en

er
at
io
n

ng=30; split=1.5; seed=361
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GARD Simulations Show Multiple Compotypes 

j	
 i	

βij	
 values are drawn from a lognormal distribution 

(‘graded network’)	


Different β networks give rise to 
different dynamics.	


Number of compotypes: range 1-7, 
average ~2.	


β’s ↔ environmental chemistries 
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Hanczyc, Mansy and Szostak, Orig. Life. Evol. Biosph. (2007) 

β’s ↔ environmental chemistries 

βij	


β	


Surfaces	
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Selection in GARD 
•  Can a network of chemical reactions undergo Darwinian evolution?	

•  Are metabolism first & lipid world even worth to consider as protocells?	
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1)  Identify most frequent compotype (= target). 
2)  Rerun the same simulation while modifying the βij values at each 

generation, biasing the growth rate towards the target.   

beforefrequency Target 
afterfrequency Target    =ExcessSelection

H:  compositional similarity between current and target. 

Based on: Vasas, Szathmary and Santos, Proc. Natl. Acad. Sci. 107 (2010). 

Selection of GARD assemblies towards a target compotype. 
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Positive Negative 

beforefrequency Target 
afterfrequency Target    =ExcessSelection

Selection in GARD 



24 

No	  selection

U
nd

er
	  s
el
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n

POPULAT ION;	  selection;	  NG=100;	  split=1;	  S eed=1-‐1000;	  S pop=1000
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Markovitch and Lancet, Artificial Life 18:3 (2012). 

Selection in GARD 
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Lack of selectivity in GARD? NO. 

Their weak points: 
(1)  Target is not a composome. 
(2)  Only a single simulation performed. 
(3)  Small repertoire (NG=10) and assembly size (Nmax=6). 
(4)  Arbitrary fitness threshold. 

Index of assembly composition 

Fr
eq

ue
nc

y 

Vasas, Szathmary & Santos, PNAS 107, 1470-1475 (2010): Imposing 
Darwinian selection in GARD has, at most, negligible effect… 

–– Regular 
–– Beneficial 
–– Detrimental 



L og10	  [mutual	  catalys is 	  power]
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How the β network effects selection ? 
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ßSelf  |  Mutualà 

à Too much self-catalysis is not good à ‘Dead-End’. 
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Markovitch and Lancet, Artificial Life 18:3 (2012). 



Experimental hints that excess mutual catalysis is 
required for effective evolvability: 

Self vs. Mutual catalysis 

•  RNA fragments (of Azoarcus group I ribozyme) that are mutually interacting 
outcompete selfish yet efficient individual fragments [Vaidya & Lehman Nature 
(2011)]. 

•  In an abstract chemistry model, if self-replication is inhibited then self-maintaining 
organizations arise [Fontana & Buss, PNAS (1994); see also Szathmary, 
Proceedings: Biological Sciences (1995)]. 

•  A particular ribozyme (R3C) is capable of only 2 slow doublings, yet a conversion 
into two cross-replicating ribozymes allows for many fast doublings [Lincoln & 
Joyce, Science (2009)]. 

•  A mutualistic network of replicating peptides is adaptable to physiochemical 
conditions (pH, salt) [Dadon et al, Angew. Chem. Int. Ed. (2008)]. 

•  Mutualism is also needed for effective contagion [Ugander et al, Proc. Natl. Acad. 
Sci (2012)]. 27 



Ecology 

v  Predator–Prey 

v  r–K relations 

v Lotka & Volterra 
v MacArthur  
v Malthus & Verhulst 
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Fixed population size.	


Population Dynamics in GARD 

At each time point, each 
assembly is colored by its 
compotype.	
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Population Dynamics in GARD 
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Species = compotypes 30 
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Why plateau doesn’t 
reach 1.0 ?	


Logistic growth:	


Species = compotypes 31 
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Species = compotypes 

“Takeover” of a fast-
rising compotype by a 
slower one.	
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Population Dynamics in GARD 
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Logistic growth:	
Intricate food-web (αij values).	
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Prebiotic Ecology 
From molecules to Ecosystem 

Metabolism 
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GARD’s Ecology 
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Lipid-world & GARD model: compositional assemblies 

Ø NOT JUST CONTAINER ! 

Compotypes (clusters of faithfully replicating compositions) 

Ø Darwinian selection 
 

Mutual catalysis is required for effective evolvability 
 

….. 

….. 

….. 

….. 
39 
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Real GARD – Raphael Zidovetzki, U. California Riverside 
Real lipids: phosphate-idyl-(serine / amine / choline), sphingo-myelin 

and cholesterol. 
Actual physical properties (charge, length, unsaturation). 

Variability of lipid lengths in vesicle is highly correlated to 
vesicle replication time
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Time 

Chiral GARD – origins of biochirality 

Biology Direct 5 (2010) 
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1/τ ~ compositional 
mutation rate. Compositional 

diversity 

Evolvability Score: 
( )01 HES −=τ

Same behavior in other 
evolutionary parameters 

Compotype diversity 
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