T. Furusato, F. Horie, H. Matsubayashi, K. Amikura, Y. Kuruma, and *T. Ueda. ACS Synthetic Biology 2018; 7:953-961
Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa.
G. Rampioni, F. D'Angel, M. Messina, A. Zennaro, Y. Kuruma, D. Tofani, L. Leoni, *P. Stano. Chem Commun 2018, 542090-2093
Construction of artificial cell based on cell-free protein synthesis system and vesicles.
*Y. Kuruma
“Promising Construction and Applications of Artificial Smart-Cells(CMC Press Edt. M. Ueda, 2017)”, page 51-60
Review: Cell-free translation system: development in biochemistry and advance in synthetic biology.
T. Kanamori, T. Nagaike (Sugimoto), Y. Kuruma, K. Amikura, *T. Ueda Seikagaku 2017
89(2): 211-220
What can synthetic biology offer to artificial intelligence (and vice versa)?
*L. Damiano, Y. Kuruma, P. Stano
Biosystems 2016; 148:1-3.
Review: Cell-free Synthesis of Membrane Proteins.
*Y. Kuruma, T. Ueda
Seibutsu-Butsuri 2016; 56 (3):162-4.
Review: Membrane protein synthesis by PURE system.
*Y. Kuruma, T. Ueda
Jikken-Igaku 2016; 34(3):471-6.
The PURE system for the cell-free synthesis of membrane proteins.
*Y. Kuruma, T. Ueda
Nature Protocols 2015; 10:1328–44.
Creation of Simple Biochemical Systems to Study Early Cellular Life.
*Y. Kuruma
Orig Life Evol Biosph. 2015; 45:359-60.
Cell-Free Synthesis of SecYEG Translocon as the Fundamental Protein Transport Machinery.
H. Matsubayashi, Y. Kuruma, and *T. Ueda
Orig Life Evol Biosph. 2014; 44:331-4.
In vitro synthesis of the E. coli Sec Translocon from DNA.
†H. Matsubayashi, †Y. Kuruma, *T. Ueda
Angew. Chem. Int. Ed. Engl. 2014; 53:7535-8. (†Double First)
The PURE system for protein production.
Y. Shimizu, Y. Kuruma, T. Kanamori, *T. Ueda
Methods in Molecular Biology 2014; 1118:275-84.
Open Questions on the Origin of Life (OQOL)-Introduction to the Special Issue.
*PL. Luisi, Y. Kuruma Orig Life Evol Biosph. 2014; 44:267-8.
In Vitro Reconstruction of Functional Membrane.
*Y. Kuruma, H. Matsubayashi, T. Ueda
ARTIFICIAL LIFE 14, The MIT Press 2014, 963-4.
P. van Nies, Z. Nourian, M. Kok, R. van Wijk, J. Moeskops, I. Westerlaken, JM. Poolman, R. Eelkema, JH. van Esch, Y. Kuruma, T. Ueda, *C. Danelon ChemBioChem. 2013; 14:1963-6.
Autonomous construction of synthetic cell membrane.
*Y. Kuruma, H. Matsubayashi, T. Ueda
Advances in Artificial Life ECAL 2013, The MIT Press, 9-10.
In vitro Synthesis of Membrane Protein Machinery toward the Construction of Artificial Cell.
*H. Matsubayashi, Y. Kuruma, T. Ueda
Advances in Artificial Life ECAL 2013, The MIT Press, 824.
Semi-Synthetic Minimal Cells: Biochemical, Physical, and technological Aspects.
P. Stano, T. Pereira de Souza, Y. Kuruma, P. Carrara, *PL. Luisi
Synthetic Biology Tools and Applications (ELSEVIER Edt. H. Zhao, 2013), 261-76.
Functional analysis of membraneous Fo-a subunit of F1Fo-ATP synthase by in vitro protein synthesis.
Y. Kuruma, T. Suzuki, S. Ono, M. Yoshida, *T. Ueda
Biochem. J. 2012; 442:631–8.
From Cell-free To Homunculus.
*Y. Kuruma
Biomedia 50(The Society for Biotechnology, 2012), 510.
P. Stano, P. Carrara, Y. Kuruma, T. Souza, *PL. Luisi
Journal of Materials Chemistry 2011; 21:18887-902.
Synthetic Biology and the Minimal Cell Project.
P. Stano, Y. Kuruma, T. Souza, P. Carrara, *PL. Luisi
4th European Conference on Chemistry for Life Sciences, 2011, 109-12.
Artificial organelle for energy production in artificial cell.
*Y. Kuruma, T. Suzuki, M. Yoshida, T. Ueda
Advances in Artificial Life ECAL 2011, The MIT Press, 438.
Liposome Mediated Synthesis of Membrane Proteins.
*Y. Kuruma
The Minima Cell (Springer Science+Business Media B.V. Part 3, 2011), 217-30.
Construction of the Synthetic Cell Based on the Reconstructed Cell-Free Translation System, PURE system.
*Y. Kuruma, T. Ueda
CHEMINAS 2011; 10(2): 5-11.
New and Unexpected Insights on the Formation of Protocells from a Synthetic Biology Approach: The Case of Entrapment of Biomacromolecules and Protein Synthesis Inside Vesicles.
P. Stano, T. Pereira de Sauza, M. Allegretti, Y. Kuruma, *PL. Luisi
The Minima Cell (Springer Science+Business Media B.V. Part 3, 2011), 195-216.
Production of Multi-Subunit Complexes on Liposome Through an E. coli Cell-Free Expression System.
Y. Kuruma, T. Suzuki, *T. Ueda
Methods in Molecular Biology 2010; 607:161-71.
Biosynthesis of Proteins Inside Liposomes.
P. Stano, Y. Kuruma, T. Pereira de Souza, *PL. Luisi
Methods in Molecular Biology 2010; 606:127-45.
Synthetic Approach to the Understanding of Minimal Cell Membrane.
*Y. Kuruma
Origins of Life and Evolution of Biospheres, Vol. 40, Num. 4-5 (Springer Press, 2010), 457-9.
Y. Kuruma, P. Stano, T. Ueda, *PL. Luigi
Biochem Biophys Acta-Biomem. 2009; 1788: 567-74.
UncI protein can mediate ring-assembly of c-subunits of FoF1-ATP synthase in vitro.
Y. Ozaki, T. Suzuki, Y. Kuruma, T. Ueda, *M. Yoshida
Biochem Biophys Res Commun. 2008; 367:663-6.
Biosynthesis of Phosphatidic Acid in Liposome Compartments - Toward the Self-Reproduction of Minimal Cells.
*Y. Kuruma
Orig Life Evol Biosph. 2007; 37:409-13.
Protein synthesis in liposomes with a minimal set of enzymes.
G. Murtas, Y. Kuruma, P. Bianchini, A. Diaspro, *PL. Luisi Biochem Biophys Res Commun. 2007; 363:12-7.
Review: Cell-free translation systems for protein engineering.
Y. Shimizu, Y. Kuruma, BW. Ying, S. Umekage, *T. Ueda FEBS J. 2006; 273: (2006), pp. 4133-4140.
Y. Kuruma, K. Nishiyama, Y. Shimizu, M. Müller, T. Ueda Biotechnol Prog. 2005; 21:1243-51.